
1

Tracing, Ranking and Valuation of Aggregated
DER Flexibility in Active Distribution Networks

Andrey Churkin, Wangwei Kong, Member, IEEE, Jose N. Melchor Gutierrez,
Eduardo A. Martı́nez Ceseña, Member, IEEE, and Pierluigi Mancarella, Senior Member, IEEE

Abstract—The integration of distributed energy resources
(DER) makes active distribution networks (ADNs) natural
providers of flexibility services. However, the optimal operation of
flexible units in ADNs is highly complex, which poses challenges
for distribution system operators (DSOs) in aggregating DER
flexibility. For example, to maximise the provision of services,
flexible units must be strongly coordinated to manage network
constraints, e.g., perform power swaps. Furthermore, due to
the nonlinearities of aggregated DER flexibility provision, some
units may need to rapidly change their outputs to enable the
services. To address these challenges, this paper brings together
exact AC optimal power flow (OPF) models and a cooperative
game formulation and presents a new framework for tracing,
ranking, and valuation of aggregated DER flexibility in ADNs.
Extensive tests and simulations performed for the 33-bus radial
distribution network demonstrate that the framework enables
translating complex DER interactions into useful information for
DSOs by ranking the criticality of flexible units and performing
flexibility valuation based on its cost or economic surplus.
Additionally, the framework proposes no-swap constraints and
a nonlinearity metric which can be used by DSOs to identify
unreliable operating regions with power swaps or rapid changes
in flexible unit dispatch.

Index Terms—Active distribution network (ADN), Cooperative
Game Theory, distributed energy resources (DER), flexibility
services, nonlinearity, Shapley value, TSO-DSO coordination.

I. INTRODUCTION

THE increasing integration of distributed energy resources
(DER) and flexible consumers makes active distribution

networks (ADNs) natural providers of flexibility services [1],
[2]. Such services can be utilised within distribution networks,
as well as aggregated and traded between distribution system
operators (DSOs) and transmission system operators (TSOs).
In this regard, multiple TSO-DSO coordination schemes and
flexibility market designs have been proposed to enable flex-
ible power trading between distribution and transmission sys-
tems [3]–[7]. More specifically, in recent years, significant
research efforts have been devoted to modelling the aggregated
flexibility at a selected location (e.g., TSO-DSO interface)
as sets of feasible operating points in the P-Q space [8]–
[15]. Such sets are known as flexibility P-Q areas, flexible
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power capability charts, or nodal operating envelopes. A
thorough comparison of models and approximation methods
for aggregated flexibility estimation is given in [16]–[18].

Regardless of their benefits, current studies on flexibility
P-Q areas focus on estimating the limits (boundary) of the
aggregated flexible power provision, overlooking the optimal
flexible unit dispatch and contributions of individual units to
aggregated flexibility.1 Moreover, the P-Q areas are formulated
under the potentially unrealistic assumption that all flexible
units are perfectly coordinated and can perform fast flexible
power control. However, the complexity and nonlinearity
of the optimal flexible unit dispatch can pose significant
challenges for DSOs. This work demonstrates two major
challenges to the aggregated DER flexibility provision:

1) Flexible power swaps can occur when flexible units
cannot follow purely economic incentives due to network
constraints (e.g., voltage and thermal limits). In such
cases, some units have to manage network constraints
to enable other units to provide flexibility services (and
potentially earn most of the revenue from the provision
of services). For example, some units may need to
produce flexible power (to manage voltage and thermal
constraints) whereas other units consume it. DSOs can
provide aggregated flexibility in such regimes only under
the assumption of perfect unit coordination. However,
this assumption may be unrealistic, as some units may
only be partially controllable by DSOs, and not all
units may exchange information. Recent studies, such
as [19], highlighted the need for developing new mod-
elling approaches for distribution networks with flexi-
ble resources located behind the meter, e.g., prosumers.
Without sufficient control and coordination of flexible
units, DSOs would not be able to operate in regimes with
flexible power swaps and achieve full aggregated network
flexibility. Moreover, using power swaps can be risky for
DSOs, as loss of coordination between units can result in
infeasible network operation.

2) Rapid nonlinear changes in flexible unit dispatch may
be required between close operating points. Such shifts in
the flexible power of units are justified by both economic
reasons (differences in the units’ cost functions) and
network constraints (impact of the binding constraints on
unit operation). However, in reality, flexible units might

1Flexible units are resources with the technical ability to adjust their power
exchange with the grid, e.g., controllable DER, such as battery energy storage
systems, prosumers, electric vehicle aggregators, etc.
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not have sufficient ramp capabilities to follow such a
complex dispatch with rapid nonlinear changes. Recent
projects such as [20] demonstrated that flexible resources
in real networks may have very limited ramp capabilities.
It follows that DSOs may face problems in the optimal
flexible unit dispatch where slow units may not be able
to perform rapid regulation of their power, thus reducing
the economic efficiency of the flexibility services or even
putting the system operation at risk.

In view of the flexible unit dispatch complexity and the
aforementioned challenges, it becomes necessary to develop
novel approaches for tracing, ranking and valuation of ag-
gregated DER flexibility in ADNs. Moreover, to accurately
capture the nonlinearity and nonconvexity of the aggregated
DER flexibility provision, such approaches must include full
AC power flow models.

There have been attempts to address the problem of flex-
ibility aggregation and disaggregation in ADNs [21]–[25].
However, existing literature focuses on either technical (e.g.,
capacity disaggregation, dispatch feasibility) or economic as-
pects (e.g., cost minimisation) to assess the contributions of
flexible units to aggregated flexibility. Neither of these options
is optimal. If flexible units are only ranked based on the
maximum flexible power that they can provide (capacity-based
ranking), their costs and placement cannot be reflected in
flexibility valuation mechanisms. If the ranking is based on
cost minimisation, the cheaper flexible units are allocated most
of the service payments, whereas the value and contributions
by more expensive units, which may perform power swaps
to enable the services, are underestimated. Such units may
receive fewer incentives to participate in the flexibility service
provision. It follows that comprehensive flexibility tracing,
ranking, and valuation mechanisms should be able to consider
multiple relevant factors, such as the capacities and costs of
the flexible units, as well as the nonlinear effects of network
constraints. In view of new challenges in DER valuation
[26], it becomes necessary to develop adequate valuation
mechanisms that provide the right coordination and incentives
for flexible units in distribution networks, e.g., availability and
delivery (utilisation) payments may be needed to guarantee
enough flexibility volume on the market [25], [27].

There are studies on independent DER flexibility service
modelling that present key concepts and tools for flexibility
valuation mechanisms discussed above. For example, existing
literature provides a wide range of models to explore DER
bidding in local flexibility markets and methods for distribu-
tion locational marginal pricing [28]–[33], as well as DER
provision of flexibility and ancillary services in the context
of peer-to-peer market design, e.g., in [34], [35]. But, as
these references focus on distributed solutions for individual
DER, they do not explicitly capture the DER coordination and
incentives required for aggregated network flexibility studies.
Some of the studies also lack the detailed AC models required
to analyse the complex interactions between DER in the
context of flexibility aggregation.

To capture the value of DER coordination, several studies
have explored the cooperative game formulations as a potential
solution for specific applications, e.g., prosumer management

[36], energy communities [37]–[39], and storage sharing sys-
tems [40]. It has been demonstrated that solution concepts
from Cooperative Game Theory, such as the Shapley value,
have useful properties for estimating both the economic value
of coordination (e.g., costs or payments) and technical aspects
(e.g., analysing the effects of constraints and criticality of
parameters). Cooperative game formulations have been suc-
cessfully used for solving allocation and ranking problems in
power systems [41]–[45], analysing the stability and incentive
compatibility of cooperation [38], [46], [47], and developing
data valuation mechanisms and data marketplaces [48], [49].
Yet, no framework has been proposed to use cooperative game
formulations for tracing, ranking, and valuating aggregated
flexibility in ADNs.

In the context of aggregated DER flexibility valuation,
the literature does not consider game-theoretical approaches
to capture the value of cooperation and propose coordina-
tion mechanisms. Studies such as [25] considered only cost-
minimising disaggregation of flexibility without a comprehen-
sive flexibility ranking and valuation, overlooking contribu-
tions of some critical units (such as the ones engaged in power
swaps to enable the services). Regardless of this gap, only
one study that considers cooperative games for the valuation
of aggregated DER flexibility was identified by the authors
[46]. However, this study used game-theoretical approaches
to allocate the cost of flexibility to different system operators
rather than to allocate the revenues among DER. Moreover,
a linear DC power flow model was utilised, which overlooks
the physics of flexible power provision in ADNs. Thus, this
approach is not suitable for the valuation of aggregated DER
flexibility within ADNs.

To address the aforementioned gaps, this paper proposes
a framework for tracing, ranking, and valuating aggregated
flexible power in ADNs with multiple flexible units. Using
an exact AC optimal power flow (OPF) formulation for radial
distribution networks and the concept of flexibility P-Q areas,
the framework introduces models for estimating the limits of
aggregated network flexibility and minimising the cost of flex-
ibility services, therefore providing the optimal flexible unit
dispatch. For each feasible flexibility request, these models
identify the contributions of flexible units to the capacity, cost,
and economic surplus of aggregated flexibility provision. To
deal with the combinatorial nature of flexibility aggregation
from multiple flexible units, a cooperative game formulation
is introduced. The useful properties of the Shapley value are
leveraged to estimate the criticality of flexible units to the
aggregated ADN flexible capacity (capacity-based ranking)
and allocate payments between units for flexibility provision
(surplus-based remuneration). Even though AC power flow
models, the concept of flexibility P-Q areas, and game-
theoretical approaches have been used individually in the lit-
erature on aggregated network flexibility, the proposed frame-
work is the first one to bring these models together to introduce
the dedicated mechanisms for tracing, ranking and valuation
of DER flexibility in ADNs. Moreover, in contrast to existing
studies, the framework enables analysing the nonlinearities of
the aggregated flexibility provision and potential issues of unit
coordination. Binary variables corresponding to P-Q flexibility
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regulations and no-swap constraints are introduced to identify
flexible power swaps between units. A nonlinearity metric and
a nonlinearity assessment algorithm are proposed to detect
rapid nonlinear changes in flexible unit dispatch.

The proposed tracing, ranking, and valuation tools based on
the Shapley value facilitate translating complex DER interac-
tions into more useful information for DSOs. Conventional
OPF models consider a single snapshot of the aggregated
flexibility provision for a given P-Q operating point (only the
optimal combination of flexible units). Given the complexity
of the optimal flexible unit dispatch, such models can un-
derestimate contributions by some critical flexible units, e.g.,
units that perform flexible power swaps to alleviate network
constraints. In this regard, the proposed game-theoretic for-
mulation captures both the individual contributions of flexible
units to flexibility requests and all possible combinatorial
effects of joint flexibility provision, providing a comprehensive
ranking of the units’ value. The applicability of the proposed
framework is demonstrated through extensive simulations for
a well-known 33-bus radial test system.

The research gap in the literature and the contributions
of this work are further highlighted in the Appendix, which
provides a mapping of the most relevant references and
research directions. Specifically, the paper makes the following
contributions:

• A novel framework is introduced for tracing, ranking,
and valuating aggregated flexible power in distribution
networks. The framework brings together full AC OPF
models for radial networks and a cooperative game
formulation, which enables estimating contributions of
flexible units to aggregated network flexibility and to each
separate flexibility request. It can be used by DSOs to
identify the most critical flexible units or remunerate units
for participating in the flexibility services provision.

• It is demonstrated that flexible units exhibit complex
nonlinear behaviour when providing aggregated flexibility
in ADN. Some units can be required to shift their power
output rapidly to perform active network management
and voltage control. A nonlinearity metric is proposed to
identify operating regions with rapid nonlinear changes
in the flexible unit dispatch, which DSOs may want to
avoid. The flexible power swap phenomenon is discov-
ered, which happens when different units simultaneously
produce and consume flexible power to alleviate net-
work constraints and maximise network flexibility. This
behaviour poses challenges for both the operation and
pricing of flexible units.

• It is shown that, in the context of aggregated flexibility
valuation, the Shapley value can be used as a mech-
anism that inherently includes availability and delivery
(utilisation) payments for flexible units. The inclusion
of both the optimal unit dispatch and units’ potential
contributions in the remuneration mechanism can give
additional incentives for units to declare their maximum
capability at a lower cost.

The rest of this paper is organised as follows. Section II
introduces models and metrics used to characterise aggregated

flexibility of distribution networks, formulates the framework
for coalitional analysis of flexibility requests, and defines
tools for analysing unit coordination and the nonlinearity of
aggregated flexible power provision. In Section III, extensive
simulations are performed for a radial distribution network
with four flexible units. The advantages and challenges of the
proposed framework are discussed in Section IV. Finally, Sec-
tion V concludes the paper. The Appendix provides a mapping
of the most relevant references and research directions.

II. MODELLING FRAMEWORK: APPROACHES AND
METRICS TO CHARACTERISE NETWORK FLEXIBILITY

A. Network Flexibility as a Set of Feasible Operating Points

Assuming the impacts of the distribution network on ag-
gregated flexibility are negligible, the operation limits of
multiple flexible units can be mathematically described using
the Minkowski addition of their P-Q capability sets [12], [50].
For example, considering two sets A and B, the Minkowski
addition is the set formed by adding each vector in A to each
vector in B, as denoted by:

A⊕B = {a+ b | a ∈ A, b ∈ B} (1)

An example of a Minkowski addition of two P-Q capability
sets is shown in Fig. 1. The figure shows that the aggregated
flexibility can be estimated as the boundary of A ⊕ B. This
example will be recalled later in this section to illustrate the
contributions of units to various flexibility requests.

However, in the context of aggregated ADN flexibility,
applying the Minkowski addition has several drawbacks, as
the approach does not consider network constraints and the
physics of power flows. Accordingly, currently established
aggregated flexibility analysis approaches use OPF models
to estimate the set of feasible operating points at a selected
reference bus where the flexible power from different units
can be aggregated, such as at the TSO/DSO interface [8]–[11],
[16]–[18]. Such models enable including network constraints
(e.g., power balance constraints, power flow and voltage lim-
its), DER constraints of flexibility provision, and power flow
equations. Several different power flow formulations have been
used in the literature to describe the flexibility of distribution
networks, such as linearised OPF models [10], nonlinear AC
OPF models in polar and rectangular voltage coordinates [9],
[11], the DistFlow OPF formulation for radial networks [16].
In this work, the latter formulation (the DistFlow model) is

⊕ =
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P-Q capability sets initial operating point

Fig. 1. Example: Minkowski addition of P-Q capability sets of two flexible
units. Network constraints are not considered.
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selected to estimate the flexibility of radial ADNs: it enables
formulating network constraints as quadratic equations and is
equivalent to the exact AC power flow equations for systems
with radial topology, thus capturing the nonlinear nature of
active and reactive power flows and voltage constraints [51],
[52]. The model presented in (2a)-(2n) is modified by includ-
ing power outputs of flexible units and binary variables corre-
sponding to flexible power regulations. These variables will be
used in logical constraints to forbid simultaneous consumption
and production of flexible power for each unit, formulate
coalitions of units, and study coordination issues of flexibility
provision, such as the flexible power swap phenomenon.2 The
modified DistFlow model is a mixed integer quadratically
constrained programming (MIQCP) problem, which can be
solved with modern MIQCP solvers such as Gurobi 10.0.

The variables of the model are the active and reactive power
of conventional controllable generators, pn,g , qn,g , power
flows, pnm, qnm, bus voltages, Vn, and branch currents, inm,
where n ∈ N and (n,m) ∈ L are the sets of network
buses and lines. The power of each flexible unit f ∈ F is
given by its available P-Q upward and downward regulation
capacities indicated by the corresponding arrows. That is,
units can produce or consume flexible power, subject to
their initial operating points. Binary variables xn,f define the
availability status of units: units with xn,f = 0 cannot provide
any flexible power regulation. Binary variables such as xp↑

n,f

correspond to P-Q upward and downward regulations of each
unit, while variables such as xp↑ control regulation decisions
for all available units together. Active and reactive power of
generators is limited in (2a)-(2b). Equations (2c)-(2d) define
power flows between buses n and m in a radial grid, where
ℜ(Znm) and ℑ(Znm) are the real and imaginary parts of the
branch impedance, and pm,d and qm,d are nodal loads. The
voltage relation between buses n and m is defined by (2e).
Equation (2f) determines the relation between branch power
flows and currents. The apparent power flow limits and nodal
voltage limits are imposed in (2g), (2h). The P-Q capability
of each flexible unit is defined in (2i)-(2l), where upward and
downward regulation capacities are interrelated with the corre-
sponding binary decision variables. Finally, logical constraints
(2m)-(2n) state that, if available, units can perform only one
of the regulations (either produce or consume flexible power).

In this work, the modified DistFlow model serves as the
basis for flexibility tracing, ranking, and valuation in radial dis-
tribution networks. This formulation also enables analysing the
nonlinear flexible unit dispatch (and potential unit coordination
issues) induced by the OPF quadratic terms, e.g., in (2e)-(2h).
The models introduced below in this section will be iteratively
using the DistFlow variables and constraints defined in (2a)-
(2n) to approximate the flexibility area boundary, minimise the
cost of flexibility services, and formulate cooperative games
among flexible units. Before introducing these models, it is

2Binary variables corresponding to flexible power regulations may be
unnecessary for units with strictly increasing cost functions, as a single-period
cost-minimising model for flexibility estimation will never provide a solution
with a unit simultaneously consuming and producing power. However, it is
advised to introduce these variables and logical constraints for models with
multiple time periods or not cost-minimising objective functions.

MODEL Modified DistFlow [MIQCP]

Variables:
pn,g, qn,g n ∈ N , g ∈ G
pnm, qnm (n,m) ∈ L
Vn (Vn

2 = wn) n ∈ N
inm (inm

2 = lnm) (n,m) ∈ L
p↑n,f , p

↓
n,f , q

↑
n,f , q

↓
n,f n ∈ N , f ∈ F

xn,f ∈ {0, 1} n ∈ N , f ∈ F
xp↑
n,f , x

p↓
n,f , x

q↑
n,f , x

q↓
n,f ∈ {0, 1} n ∈ N , f ∈ F

xp↑, xp↓, xq↑, xq↓ ∈ {0, 1}

Constraints:
pmin
n,g ≤ pn,g ≤ pmax

n,g ∀n ∈ N , g ∈ G (2a)

qmin
n,g ≤ qn,g ≤ qmax

n,g ∀n ∈ N , g ∈ G (2b)

pnm =
∑

d∈D,g∈G

(
pm,d − pm,g

)
(2c)

+
∑
f∈F

(
xp↓
m,fp

↓
m,f − xp↑

m,fp
↑
m,f

)
+ℜ(Znm)lnm +

∑
(m,k)∈L

pmk ∀(n,m) ∈ L

qnm =
∑

d∈D,g∈G

(
qm,d − qm,g

)
(2d)

+
∑
f∈F

(
xq↓
m,fq

↓
m,f − xq↑

m,fq
↑
m,f

)
+ℑ(Znm)lnm +

∑
(m,k)∈L

qmk ∀(n,m) ∈ L

wm = wn +|Znm|2 lnm (2e)
−2

(
ℜ(Znm)pnm + ℑ(Znm)qnm

)
∀(n,m) ∈ L

p2nm + q2nm = lnmwn ∀(n,m) ∈ L (2f)
p2nm + q2nm ≤ (Smax

nm )2 ∀(n,m) ∈ L (2g)
(V min

n )2 ≤ wn ≤ (V max
n )2 ∀n ∈ N (2h)

0 ≤ p↑n,f ≤ xp↑xp↑
n,fp

↑max
n,f ∀n ∈ N , f ∈ F (2i)

0 ≤ p↓n,f ≤ xp↓xp↓
n,fp

↓max
n,f ∀n ∈ N , f ∈ F (2j)

0 ≤ q↑n,f ≤ xq↑xq↑
n,fq

↑max
n,f ∀n ∈ N , f ∈ F (2k)

0 ≤ q↓n,f ≤ xq↓xq↓
n,fq

↓max
n,f ∀n ∈ N , f ∈ F (2l)

xp↑
n,f + xp↓

n,f ≤ xn,f ∀n ∈ N , f ∈ F (2m)

xq↑
n,f + xq↓

n,f ≤ xn,f ∀n ∈ N , f ∈ F (2n)

important to define the aggregated power at the selected refer-
ence bus, e.g., a primary substation or TSO/DSO interface. For
bus nref, the aggregated active and reactive power is the sum
of power injections (power flows through connected branches
and power regulations of flexible units at this bus):

Pn =
∑

(n,m)∈L

pnm +
∑
f∈F

(
xp↓
n,fp

↓
n,f − xp↑

n,fp
↑
n,f

)
n = nref (3a)

Qn =
∑

(n,m)∈L

qnm +
∑
f∈F

(
xq↓
n,fq

↓
n,f − xq↑

n,fq
↑
n,f

)
n = nref (3b)
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MODEL Flexibility boundary estimation [MIQCP]

Objective:
min αp

nPn + αq
nQn n = nref (4a)

Constraints:
modified DistFlow model (2a)-(2n) (4b)
aggregated flexibility Pn, Qn (3a)-(3b) n = nref (4c)
P ′
n − ϵpn ≤ Pn ≤ P ′

n + ϵpn n = nref (4d)
Q′

n − ϵqn ≤ Qn ≤ Q′
n + ϵqn n = nref (4e)

Then, the boundary estimation of the aggregated flexibility
area can be formulated as model (4a)-(4e). Objective function
(4a) minimises or maximises the network’s power consump-
tion at the reference bus, where coefficients αp

n and αq
n control

the optimisation directions in the P-Q space. Constraints of the
modified DistFlow model and the aggregated power equations
are introduced in (4b), (4c). In (4d), (4e), the aggregated active
and reactive power is limited by ϵ-intervals that are used to
produce the piece-wise linear approximation of the flexibility
area boundary with operating points (P ′

n,Q′
n).

The optimisation model (4a)-(4e) can be solved iteratively to
approximate the boundary of the network flexibility area at the
reference bus with the desired level of granularity.3 However,
this approach does not provide additional information on
the operating conditions within the area, e.g., what units
have to be activated, what level of coordination is required
to reach certain operating points, and how to remunerate
units for providing different flexibility requests. Moreover,
the boundary-estimation model cannot incorporate additional
metrics of flexibility, such as the cost and economic surplus
of flexible power provision. These issues are addressed with
more advanced models and tools in the following subsections.

B. Network Flexibility as a Cost-minimising OPF Problem

For each feasible operating point (a flexibility service re-
quest), the aggregated flexibility of a distribution network can
be characterised by the costs associated with the flexible power
of available units [9], [12]. A cost-minimisation model can
identify the cheapest units to be activated for providing a
specific flexible power request, naturally capturing their contri-
butions to the network aggregated flexibility. Given a flexibility
request (P ′

n,Q′
n), i.e., a new operating point requested for a

flexibility service at the reference bus, the cost-minimising
OPF problem can be formulated as presented in (5a)-(5e).
Objective function (5a) minimises the costs of upward and
downward regulations for all flexible units available in the
network. Note that the units’ cost functions Cn,f can set
different costs for producing and consuming flexible active or
reactive power. Constraints of the modified DistFlow model
and the aggregated power equations are introduced in (5b),
(5c). Aggregated active and reactive power at the new operat-
ing point requested is defined in (5d), (5e).

3The discussion of the flexibility areas construction algorithms can be found
in [16]–[18].

MODEL Cost minimisation of flexibility requests [MIQCP]

Objective:
min

∑
n∈N

∑
f∈F

Cn,f (p
↑
n,f , p

↓
n,f , q

↑
n,f , q

↓
n,f ) (5a)

Constraints:
modified DistFlow model (2a)-(2n) (5b)
aggregated flexibility Pn, Qn (3a)-(3b) n = nref (5c)
Pn = P ′

n n = nref (5d)
Qn = Q′

n n = nref (5e)

The cost-minimising model (5a)-(5e) enables to analyse
the aggregated network flexibility at any feasible operating
point, both at the flexibility area boundary and within the
boundary. A solution to (5a)-(5e) provides information on the
components of flexible power for a given flexibility request,
i.e., the optimal flexible power outputs of the units, p↑∗n,f , p↓∗n,f ,
q↑∗n,f , and q↓∗n,f . Therefore, this model can serve as a tool for
tracing, ranking, and valuation of network flexibility, where
the cheapest flexible units get activated subject to network
constraints. Moreover, the cost-based formulation enables es-
timating additional metrics to characterise network flexibility.
For example, the optimised objective function (5a) provides
the total minimum cost of meeting a flexibility request:

F cost =
∑
n∈N

∑
f∈F

Cn,f (p
↑∗
n,f , p

↓∗
n,f , q

↑∗
n,f , q

↓∗
n,f ) (6)

Assume that there exists a TSO-DSO flexibility market in
which TSO pays DSO for active and reactive power control
at the reference bus nref, ∆Pn = P ′

n − P 0
n , ∆Qn = Q′

n −
Q0

n.4 If these payments can be described by a market price
function π, then the economic surplus of flexibility provision
is the difference between the payment and the optimised cost
of flexible power:

F surplus = πn(∆Pn,∆Qn)− F cost n = nref (7)

These metrics are useful for interpreting network flexibility
since they capture both the flexible power outputs of the units
and their economic impacts, such as the cost and the economic
surplus of power provision. However, the cost-minimising OPF
problem formulation is biased as it selects only the cheapest
flexible units and does not consider all possible contributions
of other units to network flexibility. In this regard, the follow-
ing subsection introduces the cooperative game formulation
of network flexibility, where different possible combinations
of flexible units and their contributions are included in the
tracing, ranking, and valuation mechanisms.

C. Network Flexibility as a Cooperative Game among Flexible
Units

The flexibility of a distribution network with multiple flex-
ible units has an inherent combinatorial nature: some flexible

4This market assumption, used to estimate the economic surplus of flexi-
bility provision, may not be true for some cases and countries. Nevertheless,
the presented ideas of flexibility ranking and valuation are general and can
be adapted to different TSO-DSO coordination schemes.
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power requests can be provided by any of the available flexible
units, whereas other requests require different combinations
of units (or even all the units) to be activated. Units with
higher potential contributions to a flexibility request are more
critical for the operation of the DSO, and it can be argued
that these units should receive additional availability payments
for ensuring the security of flexibility services. Therefore, a
comprehensive analysis of network flexibility should account
for possible combinations of units and their contributions
to the flexible power provision. Such an analysis can be
performed using the well-established tools from Cooperative
Game Theory. This section introduces the main game-theoretic
concepts that can be used for tracing, ranking, and valuating
flexibility in distribution networks. A more thorough descrip-
tion of cooperative games and Cooperative Game Theory
solution concepts can be found in [53], [54].

Assuming that simultaneous activation of flexible units
located in a distribution network brings some value of co-
operation, which can be divided and transferred between the
units, a cooperative game (N ; v) with transferable utility can
be defined as follows:5

• N is a finite set of players (flexible units available in
the network for flexible power provision). A subset of
N is called a coalition. The largest possible coalition
containing all players is called the grand coalition. As
further demonstrated in this work, the grand coalition
provides the greatest amount of available flexible power.
The collection of all coalitions is denoted by 2N .

• v : 2N → R is the characteristic function associating each
coalition S with a real number v(S), a metric describing
the value of a coalition. In this work, various metrics will
be used to describe the value of coalitions, such as the
limits of the aggregated network flexibility, the cost of
flexible power provision, and its economic surplus.

In the context of the P-Q aggregated flexibility provision
at the reference bus, the formation of a coalition S and its
value can be defined as presented in (8a)-(8g). Objective
function (8a) maximises flexible power regulation provided
by a coalition. This regulation can correspond to flexible
production or consumption depending on the power control
requested, i.e., the signs of P-Q deviations, sgn(∆Pn) and
sgn(∆Qn). Constraints of the modified DistFlow model and
the aggregated power equations are introduced in (8b), (8c).
In (8d), (8e), changes in the aggregated flexible power with
respect to the initial operating point (P 0

n ,Q0
n) are limited by

the requested flexible power, i.e., a coalition of units will not
provide more flexible power than requested from the DSO. The
direction of the flexible power regulation is given in (8f) by
the power factor (P-Q ratio) of the flexibility request. Finally,
(8g) defines the formation of coalitions among flexible units.

5Note that the representation of flexible units as players joining coalitions is
an abstract notion used to describe the combinatorial problem of joint flexible
power provision by multiple units. That is, units do not take decisions in the
formation of coalitions or compete for joining them. In this work, cooperative
games are used to allocate the values between flexible units and rank them.
It is not implied that units have to join coalitions during this allocation and
ranking process.

MODEL Coalitional analysis of flexibility requests [MIQCP]

Objective:
max sgn(∆Pn)Pn + sgn(∆Qn)Qn n = nref (8a)

Constraints:
modified DistFlow model (2a)-(2n) (8b)
aggregated flexibility Pn, Qn (3a)-(3b) n = nref (8c)
(Pn − P 0

n)sgn(∆Pn) ≤ ∆Pnsgn(∆Pn) n = nref (8d)
(Qn −Q0

n)sgn(∆Qn) ≤ ∆Qnsgn(∆Qn) n = nref (8e)
(Pn − P 0

n) = (Qn −Q0
n) cos(ϕ)

′ n = nref (8f)

xn,f =

{
1 if unit is part of coalition S

0 otherwise.
∀n ∈ N ,

f ∈ F
(8g)

Any coalition S can be characterised by the aggregated
flexibility regulations obtained from model (8a)-(8g) or by the
cost and economic surplus of these regulations, F cost(S) and
F surplus(S), as defined in (6), (7). Then, the cooperative game
formulation can be used to allocate the value of the grand
coalition, v(N), among the units, thus ranking them according
to the selected metric. The crucial measure of a player’s impact
in a cooperative game is the marginal contributions to the
coalitions the player can join. The marginal contribution to
coalition S by player i is estimated as the difference in the
value of the coalition with and without the player:

MC(S)i = v(S ∪ {i})− v(S) ∀i ∈ S ∀S ⊆ N (9)

Then, the allocation of the grand coalition value, v(N), to
player i can be found as the weighted average of player’s
marginal contributions to all possible coalitions, as defined by
the Shapley value formula:

Shi =
∑

S⊆N\{i}

|S|!(|N | − |S| − 1)!

|N |!
MC(S)i (10)

The weight of each coalition depends on the number of
players in the coalition, |S|, and the total number of players
in a cooperative game, |N |. The Shapley value has been
acknowledged as a useful tool in cost allocation mechanisms,
data analysis, and power systems research [36]–[44], [46],
[49]. Several desirable properties of the Shapley value make
it suitable for tracing, ranking, and valuation of flexibility in
distribution networks. The symmetry property guarantees that
two identical flexible units that bring equal contributions to
coalitions will always be allocated the same value. The null
player property states that a unit that contributes nothing to
any coalition will not receive a share of the grand coalition
value. The efficiency property requires that the sum of the
values allocated to all players is equal to the value of the
grand coalition. In this work, the Shapley value is exploited to
analyse the contributions of flexible units to different flexibility
requests, thus tracing the flexible power and ranking units by
their criticality. It is also demonstrated that the Shapley value
can be used as a valuation mechanism for flexible units.

Application of the coalitional model (8a)-(8g) and the Shap-
ley value to aggregated flexibility requests is illustrated based
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Fig. 2. Estimating the contributions of flexible units in the 2-player
Minkowski addition example. Network constraints are not considered.

on the Minkowski addition example with two flexible units, as
shown in Fig. 2. In this example, two flexible units (players)
A and B can form only three possible coalitions: {A}, {B},
{A,B}. Each coalition has different flexibility limits defined
by the Minkowski addition (1). The dashed line indicates the
optimisation direction for coalitions towards the new operating
point (flexibility request). Coalition {B} and {A,B} can fully
provide the requested flexibility, while coalition {A} can
provide it only partially. It is assumed that unit A provides
flexibility at a cost of 5 p.u., unit B has a cost of 8 p.u., and
the payment to DSO for this flexibility request (price π) is 10
p.u. Considering these assumptions and the flexibility limits of
the coalitions, the cost and economic surplus for each coalition
can be calculated as shown in Fig. 2. To analyse the ranking
and valuation of the units in this example, Tables I and II
show the allocation solutions provided by the cost-minimising
model and the Shapley value.

The cost-minimising model identifies units A and B as
equally critical since in {A,B} each of them provides 1.0
p.u. of flexible power regulation in the required direction.
Unit B, however, has a significantly higher P-Q capability
and is clearly more critical for flexibility service provision.
The Shapley value captures potential contributions by unit

TABLE I
LEAST-COST ALLOCATION SOLUTIONS FOR THE 2-PLAYER

MINKOWSKI ADDITION EXAMPLE

Player Allocation solutions by the cost-minimising model, in p.u.

Capacity Cost Economic surplus

A 1.0 (50.0%) 5.0 (38.5%) 5.0 (71.4%)
B 1.0 (50.0%) 8.0 (61.5%) 2.0 (28.6%)

TABLE II
SHAPLEY VALUE ALLOCATION SOLUTIONS FOR THE 2-PLAYER

MINKOWSKI ADDITION EXAMPLE

Player Allocation solutions by the Shapley value, in p.u.

Capacity Cost Economic surplus

A 0.5 (25.0%) 1.0 (7.7%) 4.0 (57.1%)
B 1.5 (75.0%) 12.0 (92.3%) 3.0 (42.9%)

B to the flexible power regulation and identifies it as 75%
critical for the requested flexibility service. It follows that
the Shapley value can be a preferable tool for tracing the
aggregated network flexibility, ranking the criticality of units,
and estimating the diversification of flexible resources. As a
remuneration mechanism, the cost-minimising model allocates
71% of the economic surplus to unit A since it provides
the same flexible power regulation at a lower cost. This
remuneration does not consider contributions of unit B to the
security of flexibility provision: unit B gets paid only for the
1.0 p.u. of flexible power delivered, and not for its availability
and potential contributions. In contrast, the Shapley value
includes the contributions of unit B in different coalitions and
allocates the economic surplus more evenly. Thus, the Shapley
value can be used as a remuneration mechanism that inherently
includes availability and delivery (utilisation) payments. In
Section III, the application of the coalitional model (8a)-(8g)
and the Shapley value in flexibility ranking and valuation will
be demonstrated based on a realistic distribution network.

D. Effects of Unit Coordination and Nonlinearity of Flexible
Power Provision

The models introduced above identify the optimal flexible
unit dispatch that maximises the aggregated network flexibility
or minimises the costs of flexible power regulations. However,
such solutions rely on the assumption of perfect unit coordina-
tion, i.e., units can instantly exchange information and take any
actions to jointly regulate the network operation and flexibility
provision. For example, due to the nonlinear constraints of
the power flow model (2a)-(2n), some units have to perform
active network management, fast flexible power regulations,
and voltage control. In reality, unit coordination might be not
perfect, and intertemporal constraints may limit changes in
their flexible power regulation.

There are several potential issues related to unit coordination
and the nonlinearity of flexible power provision that may be
undesirable for DSOs. First, in some operating points, units
can exchange (swap) flexible power to alleviate network con-
straints and maximise network flexibility. DSOs can provide
aggregated flexibility in such regimes only under the assump-
tion of perfect unit coordination. That is, if flexible units
and the DSO exchange information and centrally coordinate
actions, e.g., to determine which units should be managing
network constraints and which units provide cheap flexibility
services. However, the assumption of perfect flexible unit
coordination may be unrealistic (unless the units are owned or
operated by the same actor). Some units may only be partially
controllable by the DSO and would generally not exchange
all information with other units. In this regard, the following
unit coordination constraints can be included in the models to
disable flexible power swaps:

xp↑ + xp↓ <= 1 (11a)
xq↑ + xq↓ <= 1 (11b)

These no-swap constraints limit flexible power regulation
decisions globally for all units. That is, each unit can only
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produce or consume flexible power. There is no pair of units
that consume and produce flexible power, thus exchanging it.

Second, units may need to shift their flexible power reg-
ulations rapidly between close operating points. Such rapid
nonlinear shifts in the optimal flexible unit dispatch are
justified by both economic reasons (differences in the flexible
units’ cost functions) and network constraints (impact of
thermal and voltage constraints on the flexible unit operations).
However, in reality, flexible units might not have sufficient
ramp capabilities to follow such a complex dispatch with rapid
nonlinear changes. The presence of slow units can reduce the
economic efficiency of the flexibility services or even put the
system operation at risk. Therefore, as DSOs increasingly use
flexibility, it becomes necessary to characterise the nonlinear-
ity of the optimal flexible unit dispatch and identify risky areas
that may require fast flexible power regulations.

Measuring the nonlinearity of a mathematical optimisation
model is a complex task with many nuances. The general
idea of nonlinearity assessment is to identify the degree of
deviation from linearity in the objective function, constraints,
or variables. In a simple problem, rapid nonlinear changes
in variables can be identified by analysing the derivatives of
the corresponding functions. However, in the complex context
of the optimal flexible unit dispatch, the functions of units’
flexible power are not known a piori. The optimal flexible
power regulations for each unit can be only found for a
given set of operating points by solving the cost-minimising
OPF model (5a)-(5e). Therefore, the nonlinear behaviour of
flexible units can be characterised by a nonlinearity metric
derived by comparing solutions for a given set of operating
points. Considering a feasible P-Q space discretised with k
operating points, the nonlinearity in flexible power provision
can be measured as the maximum changes in flexible power
regulations of each unit between neighbouring points:

L = max
n∈N ,f∈F

{
max
k∈K

{
(12)(

max(p↑n,f,k − p↓n,f,k)−min(p↑n,f,k − p↓n,f,k)
)
,(

max(q↑n,f,k − q↓n,f,k)−min(q↑n,f,k − q↓n,f,k)
) }}

Then, the nonlinearity factor can be introduced as the ratio
between the maximum flexible power shift and the distance
between the points (the discretisation grid step):

∆L =
L

|∆k|
(13)

Note that in this setting, the distance between considered
operating points, |∆k|, is the key parameter that determines the
OPF solutions to be compared. The accuracy of a nonlinearity
assessment algorithm depends on this distance and the number
of operating points k. Therefore, DSOs can customise the algo-
rithm’s accuracy for various tasks, e.g., for analysing changes
between a given set of P-Q operating points (which can be far
from each other) or detecting potential rapid nonlinear changes
in the flexible unit operation by considering a set of close
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Fig. 3. Example of the nonlinearity assessment algorithm for a 16-point grid.
Values at the vertices denote unit’s flexible power at the operating points. The
absolute-value norms show maximum changes in the flexible power values for
each segment and identify rapid nonlinear shifts in the flexible unit operation.

operating points, among other applications.6 An example of
nonlinearity assessment is shown in Fig. 3, where a grid with
16 points illustrates the optimal operation of a flexible unit.
The values between the points (in the segments of the area)
denote the absolute value of the maximum changes between
neighbouring points. In the white segments, the maximum
changes are equal to the distance between the points. Thus,
there are no rapid nonlinear shifts in the flexibility provision.
However, in the grey segments, the flexible power of the unit
changes rapidly, with the nonlinearity factor ∆L of 2 and 3.
The DSO may want to avoid working in such areas as it can
be difficult to ensure the economic efficiency and security of
flexibility provision.

In the next section, the nonlinearity metric and the no-
swap constraints will be used to analyse unit dispatch and
coordination issues in a realistic distribution network.

III. SIMULATION RESULTS

A. Case Study: 33-bus Radial Distribution Network

The proposed methodology is demonstrated with the IEEE
33-bus test system, which is a 12.66kV radial distribution net-
work [52]. The total power demand of the network consumers
is 3.7 MW and 2.3 MVAr. The 33-bus system is visualised
in Fig. 4 with the force-directed graph layout algorithm
ForceAtlas2 [55]. The figure illustrates the network topology,
power demands (as circles of different sizes), network voltage
profile (nodes colouring), and electrical distances between the
buses (lengths of the arcs). Note that the voltage levels at buses
18 and 33 are close to the lower limit of 0.9 p.u., which creates
additional constraints on the network power consumption
increase.7 As further demonstrated by the simulations, such
constraints can vastly affect the flexible power provided by
units located in different parts of the network.

6Note that the proposed approach, similar to sensitivity analyses, identifies
rapid nonlinear changes, but it does not explain them (e.g., does not indicate
what constraints or parameters caused the nonlinear behaviour of units). In
this regard, future research will explore approaches to capture the drivers for
the nonlinearities (e.g., by incorporating dual variables of network constraints)
to better inform DSOs on the aggregated DER flexibility provision.

7In the original 33-bus distribution system, the voltage limits are set to
0.9 p.u. and 1.1 p.u. However, more realistic cases can have tighter voltage
constraints. For example, in the UK distribution networks, voltage deviations
are limited to ±6% of the nominal voltage. Regardless, the selection of the
voltage limits does not alter the findings of this paper.
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To explore the constraints that voltage limits can have on
the provision of flexibility, four flexible units are placed in the
network (one at the end of each feeder). The four units are
assumed to have identical P-Q capabilities: pn,f ∈ [−500, 500]
kW, qn,f ∈ [−500, 500] kVAr, where n ∈ {18, 22, 25, 33} are
the buses that the units are connected to. To ease the notations,
the flexible units will be referred to as A, B, C, and D, as
indicated in Fig. 4. The initial states of the units correspond
to their not activated condition, i.e., units neither produce nor
consume flexible power. Bus 1, the TSO-DSO interface, is
considered as the reference bus, where the flexibility from
the units is aggregated. To investigate the applicability of
remuneration mechanisms, it is assumed that the units have
different costs of providing flexible active power: 375, 350,
325, and 300 $/MWh for units A, B, C, and D, respectively.
Such costs are comparable to balancing market prices and are
aligned with the cost assumptions in recent studies [12], [56].
The cost of flexible reactive power is assumed to be 50% of
the flexible active power cost for each unit. The price that TSO
pays for flexible power in the TSO-DSO flexibility market is
set at 400 $/MWh and 200 $/MVArh. Thus, the cost and the
economic surplus of providing flexibility can be estimated as
defined in (6) and (7).

All simulations presented in this section have been per-
formed using JuMP 1.4.0 for Julia 1.6.1 programming lan-
guage and Gurobi 10.0 solver.

B. Structure of the Aggregated Network Flexibility

First, the feasibility boundary estimation model (4a)-(4e) is
applied to analyse the aggregated network flexibility, which is
the set of network feasible operating points when all flexible
units are activated and fully coordinated. This flexibility is
displayed in Fig. 5 as the area reached by the set of units
{A,B,C,D}, the grand coalition. Note that network flexibility
at the TSO/DSO interface is more complex than a linear

combination of units’ P-Q capabilities (Minkowski addition).
The resulting flexibility area has a nonlinear boundary due
to the nonlinearities of the power flow model, such as the
presence of power losses and voltage constraints. The ag-
gregated network flexibility can be decomposed into the P-Q
capabilities of individual flexible units and their combinations.
This decomposition corresponds to the coalitional structure
of the cooperative game among units. A cooperative game
with 4 players (units) consists of 15 possible coalitions, as
illustrated in Fig. 5. Model (4a)-(4e) was iteratively solved for
each coalition to approximate the flexibility areas’ boundaries.
Synergy can be observed in the flexible unit coordination:
units provide much more flexibility in large coalitions than
in smaller coalitions or when being activated individually.

Note that even though being identical, the flexible units
offer different individual flexibility areas. This is caused by
locational effects, such as power losses and voltage constraints.
For example, units C and D are located at the ends of feeders
with low voltage profiles (buses 33 and 18). These units
cannot increase their power consumption significantly due to
the voltage limits, which results in reduced flexibility areas
of coalitions {C} and {D}. It can also be seen how these
constraints propagate in the coalitional structure once more
players join the coalitions with units C and D.

The presented coalitional structure illustrates the maximum
P-Q capacities of the units and the impact of network con-
straints. However, the flexibility areas estimated by model
(4a)-(4e) do not provide additional information on the op-
erating conditions within the area, e.g., what units have to
be activated, what level of coordination is required to reach
certain operating points, and how to remunerate units for pro-
viding different flexibility requests. In this regard, in the rest
of this section, the cost-minimising OPF model and the game-
theoretic model are implemented to estimate the contributions
of flexible units to specific flexible power requests.

C. Allocation of Flexible Power Requests: a Cost-minimising
OPF Approach

The allocation of flexible power among the units can be
explicitly derived from the cost-minimising OPF model (5a)-
(5e) solved for any feasible flexible power request. The model
indicates which units provide flexible power to meet the
request while trying to activate the cheapest units first. Such
allocations can differ significantly depending on the requested
operating point in the P-Q space. Therefore, model (5a)-
(5e) was solved 14,520 times for different feasible flexibility
requests (the feasible P-Q space was discretised by a grid with
step 0.03 MVA). The resulting allocations are displayed in
Fig. 6 as a percentage of the total apparent flexible power
provided (in MVA). Note that many low-magnitude flexible
power requests (close to the initial operating point) can be
fully covered by unit D, which provides flexible power at the
lowest cost. Therefore, for such requests, unit D is allocated up
to 100% of the requested power and should be paid much more
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Fig. 5. Coalitional structure of the cooperative game among four flexible units. Each coalition is characterised by the aggregated network flexibility area in
the P-Q space at the TSO/DSO interface. The markers correspond to the initial operating point of the network, while the coordinates represent the network’s
power consumption.

than the other units.8 On the contrary, unit A has the highest
cost and is not activated for many low-magnitude flexible
power requests. It is activated and paid only for requests close
to the flexibility area limits. Thus, under the cost-minimising
OPF approach, the cheapest units get activated more often and
are allocated more power and payments.

It can be observed from the cost-minimising allocation
results that flexible power provision from several units has
a highly nonlinear behaviour. There exist multiple shifts in
the flexible power output of the units. These shifts occur due
to both technical and economic reasons amplified by the non-
linearity of the network power flow model. For example, due
to power losses and reactive power management, providing
flexible power only by the cheapest units may not be the
optimal solution for some operating points. For such points,

8Note that unit D is allocated less power than other units for the flexibility
requests that increase the active and reactive power consumption of the
network (the upper right side of the area). These differences stem from the
voltage limitation at bus 18, which reduces the P-Q capability of unit D.

model (5a)-(5e) shifts a share of flexible power between the
units to provide the least-cost feasible solution. Moreover, the
analysis of flexible power allocations reveals the power swap
phenomenon that happens when multiple units provide flexible
power under network constraints. Specifically, some units can
be producing flexible power, whereas other units consume
flexible power. Such power swaps enable alleviating network
constraints and reaching the limits of the network flexibility
area. For example, in the 33-bus test system, a significant
increase in the network power consumption cannot be achieved
by increasing the power consumption of all flexible units since
units C and D already operate close to the lower voltage limit
of 0.9 p.u. Therefore, to reach the operating points close to the
flexibility area boundary, model (5a)-(5e) provides solutions
where units C and D produce power. This enables alleviating
the voltage limits at buses 33 and 18, whereas the remaining
units consume flexible power to increase the network power
consumption and meet the flexibility request.

The power swap phenomenon has not been analysed in the
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Fig. 6. Allocation of the total apparent flexible power among the units for different flexibility requests according to the cost-minimising OPF model, in %.

existing literature on the flexibility of distribution networks.
Most of the studies imply perfect coordination of flexible
units and focus on estimating the limits of the aggregated
network flexibility, without specifying what actions are needed
to reach the boundaries. However, the assumption of perfect
unit coordination may not be realistic and requires further
research, e.g., rapid shifts in flexible power allocation between
close operating points impose additional ramp constraints on
the unit operation. Using power swaps between flexible units
to provide certain flexibility requests can also be controversial:

• From the operating standpoint, it can be more complex
and less reliable to control flexible units working in
different directions (producing and consuming power).
For example, a failure of unit C or D to produce enough
power while the overall network consumption is increased
can result in voltage collapse of the distribution network.

• From the economic standpoint, power swaps lead to
inconsistent solutions and issues with flexible units remu-
neration. For example, units can use much more flexible
power due to simultaneous consumption and production
than the total flexible power requested from DSO.

It is possible to forbid the power swap between flexible units
by adding constraints (11a)-(11b) to the OPF model (5a)-(5e),
forcing all units to either produce or consume power. The
flexibility area with no flexible power swap is indicated in
Fig. 6 by the solid line, while the entire flexibility area is
denoted by the dashed line. It appears that network flexibility
can be overestimated if not considering the issues related
to flexible power swap. Moreover, imposing the no-swap
constraints makes the aggregated flexibility areas nonconvex.
Such nonconvexity could cause additional problems with dis-
tribution networks operation. For instance, a path between
sequential operating points can contain infeasible points that
require swapping power between flexible units.

To further explore the flexible unit dispatch and coordination
issues in flexibility provision, the simulations were performed
for a series of operating points. A flexibility request (new
operating point) was selected at the boundary of the flexibility
area, as shown by the red dot in Fig. 6. Then, the linear path
from the initial operating point to the flexibility request was
discretised with 200 steps. In each step, the cost-minimising
model (5a)-(5e) was solved to determine the optimal flexible
power regulations by the units and voltage levels of the

feeders. The results are displayed in Fig. 7 as functions of
the flexibility service capacity (the length of the path towards
the selected operating point).

Analysis of the optimal flexible unit dispatch along the path
shows that units have many permutations and rapid shifts in
their P-Q regulations. Units C and D (the cheapest ones) are
activated first to provide the flexibility service. But, voltages
at buses 18 and 33 drop to the 0.9 p.u. limit, becoming
the binding constraints and limiting further flexible power
consumption by units C and D. For high-capacity flexibility
services, the power swap effect can be observed: units C and
D start producing flexible power while units A and B consume
it. Other nonlinear changes and rapid shifts in the flexible P-
Q regulations are associated with the capacity limits of the
units and differences in their cost functions. For instance, at
a flexibility service capacity of 0.72 p.u., unit B reaches its
maximum reactive power regulation, which causes unit A to
start consuming power. The same effect happens when unit A
reaches its reactive power regulation limit at flexibility service
capacity of 1.15 p.u. At service capacities of 0.8 and 0.9 p.u.
there are P-Q regulation shifts indicating economic trade-offs
between consuming active and reactive flexible power.

The observed nonlinear and rapid shifts in the flexibility
provision pose challenges for the DSO operation. To identify
and classify these shifts systematically, the nonlinearity metric
introduced in (12) and (13) was applied to the network P-
Q feasibility space discretised with step 0.03 MVA. The
nonlinearity assessment is shown in Fig. 8, where the dark
red regions indicate the edges of rapid nonlinear shifts in the
flexible power regulation. In some cases, flexible units change
their power by 0.5 MVA, which is 16.66 times more than the
distance between neighbouring operating points analysed. The
DSO can avoid these regions with high nonlinearity factors to
ensure the security and economic efficiency of flexibility ser-
vices provision. Note that the performed nonlinearity assess-
ment is similar to the edge detection via kernel (convolution
matrix) used in image processing and computer vision [57],
[58]. It, therefore, offers opportunities for developing Machine
Learning models to analyse the effects of nonlinear constraints
and predicting undesirable operating points with rapid changes
in the flexible unit dispatch.

This subsection demonstrated the usefulness of the cost-
minimising models for flexibility tracing and valuation. Such
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Fig. 7. Analysis of the optimal flexible unit dispatch along the linear flexibility
service path defined in Fig. 6: (a) flexible active power regulation, MW; (b)
reactive power regulation, MVAr; (c) voltages at the ends of the feeders, p.u.

models enable finding the least-cost flexible unit dispatch
and identifying flexible power swaps between units and rapid
changes in flexible power regulation. However, a purely cost-
based analysis of network flexibility has several disadvantages.
First, cost-minimising models consider only a single outcome
of flexibility provision for each operating point. Other possible
combinations of units and their contributions are neglected.
Therefore, such models cannot be used to comprehensively
rank units and assess their criticality. Second, remuneration
mechanisms based on cost-minimising models always favour
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Fig. 8. Nonlinearity assessment of the optimal unit dispatch. The red heatmap
displays areas with high nonlinearity factors where at least one unit shifts its
flexible power regulation rapidly.

the cheapest units and do not give incentives for more ex-
pensive units to participate in the flexibility market. In this
regard, the next subsection illustrates the advantages of the
proposed game-theoretic approach, which captures possible
contributions of units and enables including additional metrics
of flexibility provision.

D. Allocation of Flexible Power Requests: a Game-Theoretic
Approach

Any feasible flexible power request can be analysed using
the cooperative game framework, where the grand coalition
fully provides the required flexible power, and the subcoali-
tions maximise their flexible power provision in the required
direction in the P-Q space. As discussed in Section II-C,
different metrics can be used to characterise coalitions, such as
the flexible power provided, its cost, or its economic surplus.
Then, the Shapley value can be applied to estimate the contri-
butions of units and perform their ranking and valuation. This
subsection presents simulations for multiple flexible power
requests based on the game-theoretic approach and analyses
the allocation of flexibility using different metrics.

First, the aggregated apparent flexible power (in MVA) is
selected as the metric to characterise coalitions, i.e., each
coalition is represented by the P-Q limits that flexible units
can reach for a given operating point and power factor. This
capacity-based metric enables ranking units by their contri-
butions to flexibility requests and identifying the most critical
units.9 The cooperative game is solved using the Shapley value

9In this context, the criticality of a flexible unit can be seen as the
priority ranking of its contributions to a given flexibility request. More critical
units contribute the most to flexible power provision and therefore have the
greatest impact on the flexibility service reliability. Inaccurate forecasting
or unavailability of such units can result in the infeasibility of the related
operating points.
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Fig. 9. Allocation of the total apparent flexible power among the units for different flexibility requests according to the Shapley value, in %.
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Fig. 10. Allocation of the flexibility service economic surplus among the units for different flexibility requests according to the Shapley value, in %.

for multiple feasible flexibility requests, as displayed in Fig. 9.
The results indicate that for low-magnitude requests, the units
are equally useful and get allocated 25% of the requested
flexible power. This happens because the units can provide
the same flexible power for such requests and bring equal con-
tributions to the coalitions. Thus, they are symmetric players
in the cooperative game. However, a significant divergence in
the contributions happens for flexibility requests that increase
the power consumption of the network. For such requests,
units C and D cannot contribute much since their ability to
increase power consumption is limited due to the voltage
constraints. These limitations are captured by the cooperative
game formulation and result in the lower ranking for units C
and D. Note that such differences stem from the individual
P-Q capabilities of the units, as previously illustrated by the
coalitional structure in Fig. 5.

Second, the economic surplus of providing flexible power
(in $/h) is selected to characterise coalitions. This is a complex
metric that captures both the P-Q capabilities of the units
and their economic impact, i.e., the potential profits that they
bring when providing flexible power. The resulting economic
surplus allocations for multiple flexibility requests obtained by
the Shapley value are displayed in Fig. 10. These simulations
reflect the cost causality in flexibility valuation and indicate
which units contribute to the surplus of the flexible power

provision.10 For instance, unit D can produce flexible power
at the lowest cost and contributes the most to the surplus of
the flexible power provision, except in cases of the network
consumption increase, where unit D cannot provide much
flexible power.

The allocation solutions estimated by the game-theoretic
approach for different metrics provide a variety of options
to rank flexible units and remunerate them. The capacity-
based allocation estimates the criticality of units for a specific
flexibility request. The surplus-based game-theoretic approach
explicitly considers the cost of flexible power provision and
estimates the economic impact of flexible units. This approach
can serve as the remuneration mechanism: it allocates more
economic surplus to units that provide more flexible power at
lower costs and get activated in many possible coalitions. Note
that unlike the allocations obtained by the cost-minimising
OPF model, the solutions provided by the game-theoretic
approach have no operating points where one of the units
is allocated 100% of the cooperation value. This happens
since the cooperative game formulation considers not only the
flexible power of units in the grand coalition but also their
contributions to all possible subcoalitions. The advantages and
the applicability of the proposed game-theoretic framework are
further discussed in Section IV.

10Note that only the flexibility area with no power swap is considered
to test this approach. Power swaps between flexible units can lead to
inconsistent solutions, where units simultaneously produce and consume much
more flexible power than requested from an ADN. Such solutions can be
significantly more costly than the nearby operating points with no power swap,
even making the surplus of the flexible power provision negative. Analysis of
the flexible units cooperation under power swaps is left for future research.
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IV. DISCUSSION

A. Potential Applications

The above simulations demonstrate how the proposed
framework can be used to meet various needs of DSOs.
The capacity-based analysis of network aggregated flexibility
enables DSOs to identify the most critical units for certain flex-
ibility requests. The cost-based and surplus-based approaches
incorporate more complex metrics and capture both the outputs
of flexible units activated and their contributions to the value
of cooperation. Such approaches can be used not only for
ranking the usefulness of units but also for flexibility remuner-
ation mechanisms. The cost-minimising OPF model (5a)-(5e)
offers straightforward solutions where the cheapest units are
activated and paid first. Despite its simplicity, this model does
not account for possible contributions of more expensive units
and does not consider scenarios where the cheapest units may
not be available. In this regard, the allocation of the flexibility
service economic surplus among flexible units according to the
Shapley value can constitute a more promising remuneration
mechanism.

To support the Shapley-based remuneration mechanism,
Fig. 11 presents the comparison of the payments allocated
to flexible units with the payments obtained from the cost-
minimising OPF model. A thousand randomly generated flex-
ibility requests were simulated. A normal probability distribu-
tion was assumed with the mean set at the initial operating
point of the network and the standard deviation of 0.6 MVA.
The simulations reflect realistic flexibility requests, where low-
magnitude flexible power deviations are requested more often
than high-magnitude ones. According to the cost-minimising
OPF model, the cheapest unit D is activated and paid for
each of the simulated flexibility requests. Other units provide
flexibility less frequently and receive far fewer payments. Unit
A, the most expensive one, is called in only about 1/10 of all
flexibility requests. Such payments might not incentives unit
A to participate in the flexibility market. However, this unit is
still valuable for the provision of flexibility. Its contributions
are considered in the Shapley-based remuneration mechanism,
which always allocates to unit A a share of the flexibility
service economic surplus. In this way, more expensive units
get additional incentives to participate in the market and de-
clare their real P-Q capabilities and costs. Some recent studies,
e.g., [25], [27], highlighted the need to introduce availability
remuneration in flexibility markets. In this regard, the Shapley
value, which considers both the optimal unit dispatch and
units’ potential contributions in different coalitions, can serve
as a mechanism for determining the availability and delivery
(utilisation) payments.

B. Incentive Compatibility in Aggregated Flexibility Pricing

To ensure efficient procurement and optimal utilisation of
flexibility services, it is important for DSOs to implement
flexibility pricing mechanisms with the incentive compatibil-
ity property [32]. Incentive-compatible mechanisms guarantee
that for each flexible unit, truthful reporting of information
(such as flexible power cost and the available capacity) be-
comes the profit-maximising dominant strategy. Thus, flexi-

bility market participants do not have incentives to misreport
their true data or deviate from the declared values.

To analyse the incentive compatibility of the Shapley value
as a pricing mechanism for aggregated flexibility services, it
is necessary to define individual and coalitional rationality for
players (these constraints are known as the Core of the game),
verify the non-emptiness of the Core and the convexity of the
game, compute the excess of coalitions and other incentives
for players to join them [46], [47].11 Note that in the pro-
posed framework, cooperative games change for each feasible
flexibility request, involving different network constraints and
flexibility market outcomes. There exist operating points that
lead to cooperative games with the Shapley value providing
not incentive-compatible payment allocations. For example,
in operating points that require flexible power swaps between
units, some subcoalitions have high costs due to economically
not effective power swaps, which makes the cooperative game
non-convex and the Shapley value allocation not incentive-
compatible. It is important to find conditions under which
the Shapley value provides incentive-compatible pricing for
aggregated network flexibility. A thorough analysis of the
Shapley-based flexibility pricing, its incentive compatibility
and manipulability is the subject of future research.

C. Scalability and Applicability Issues

Cooperative game formulations have the disadvantage of
being prone to scalability issues. This is because the number of
possible coalitions in a cooperative game, 2N , increases expo-
nentially with the number of players N (flexible units available
in a network). To describe each coalition, model (8a)-(8g)
has to be solved, and the selected metric should be derived.
Therefore, for games with hundreds or thousands of players,
it can be intractable to consider all coalitions and implement
the Shapley value formula (10) directly. The challenges of the
Shapley value scalability have been recognised by literature in
Game Theory, power systems research, and data science (as the
Shapley value has been found useful for interpreting machine
learning models [59]–[61]). As a result, several approaches
have been proposed to estimate the Shapley value (with
different levels of accuracy) while minimising calculations
to facilitate its scalability. For example, the Shapley value
estimations based on random sampling (or stratified random
sampling) [39], [48], [49], [62]–[64] reduce computational
costs by considering a limited number of coalitions instead
of explicitly modelling 2N coalitions. However, the drawback
of random sampling is its slow convergence. For games with
thousands of players, random sampling may require an unrea-
sonably high number of simulations to accurately approximate
the Shapley value. In this regard, advanced sampling and
permutation methods have been proposed to improve the
convergence of the Shapley value approximations [45], [59]–
[61]. For example, compressed sensing [59] can exploit the

11A cooperative game with transferable utility is called convex if the
marginal contribution of any fixed player i to coalition S increases as more
players join the coalition. Convexity is the desired property of cooperative
games that guarantees the nonemptiness of the Core. It also guarantees that the
Shapley value is an element of the Core (i.e., is individually and coalitionally
rational for all players).
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sparse structure of the player’s contributions in cooperative
games, and quadrature methods and kernel functions [60]
enable generating targeted samples with good properties.
Also, the Shapley value can be applied to large problems
by reducing the number of players in cooperative games via
clustering algorithms [39], [45]. That is, clusters of players
can be considered instead of modelling individual players.
But accuracy of such applications is highly dependent on the
choice of clustering algorithm. Finally, the Shapley value can
be estimated by using alternative representations, extensions,
or decompositions of cooperative games [61], [65]–[67]. It
follows that, with the recent advances in the Shapley value
estimation approaches, it can be applied to solve practical
cooperative games with hundreds or thousands of players.

In the context of aggregated DER flexibility valuation, the
practical limit of the exact enumeration of possible coalitions
and implementation of the Shapley value formula (10) is
roughly 10 flexible units, which requires solving 1023 OPF
problems. Considering the performance of modern algorithms
and solvers, each OPF can be solved in seconds or even
fractions of a second for an average distribution network.
Thus, with a single standard computer, the proposed flexibility
valuation mechanism can take up to 20-30 minutes to allocate
payments for flexible units. Moreover, since the OPF problems
for different coalitions of units are independent, the allocation
process can be sped up using parallel computing. Therefore,
applying the proposed mechanism to flexibility remuneration
in intraday 30-minute and hourly markets should be realistic.

For larger numbers of units, e.g., 1000 independent flexi-
bility providers, the proposed methodology could be extended
with the aforementioned random sampling and clustering
techniques to approximate the Shapley value by solving only
a few thousand OPF problems. First, 1000 flexibility providers
can be clustered based on their location and parameters into a
few dozen players. Then, the cooperative game with dozens of
players can be solved using the Shapley value approximations,
e.g., based on advanced sampling and permutation methods.
Finally, the value of cooperation allocated to each player by
the Shapley value approximation should be further divided
among the flexible units in the clusters. A similar approach

has already been applied in studies on energy communities. In
[39], clustering of prosumers within energy communities was
explored, and the Shapley value approximations were used
to allocate benefits among them. The simulations presented
in [39] demonstrate that this approach can be applied to
cases with up to 200 consumers, with an approximation error
below 1%. Therefore, the Shapley-based valuation approach
proposed in this work can be applied to cases with hundreds
of flexible units. However, further research is needed to verify
the computational efficiency and accuracy of the clustering
and approximation methods in the context of aggregated DER
flexibility valuation.

V. CONCLUSION

This work investigates the formation of network aggregated
flexibility and proposes a framework for tracing, ranking, and
valuation of aggregated flexible power within ADNs. A set of
models is introduced for estimating the limits of aggregated
network flexibility provision in the P-Q space, minimising
the cost of flexibility services, and capturing contributions of
flexible units to aggregated flexibility via the cooperative game
formulation. Extensive simulations performed for numerous
feasible operating points of the 33-bus radial test system
demonstrate the effectiveness of the proposed framework for
aggregated flexibility ranking and valuation. The simulations
also illustrate the principles of aggregated flexibility formation,
the effects of network constraints, and the nonlinear complex
behaviour of flexible units. The flexible power swap effect
is discovered, which happens when different units simultane-
ously produce and consume flexible power to alleviate network
constraints and maximise the flexibility service provided by
a distribution network. The nonlinearity metric and the no-
swap constraints are implemented to analyse the optimal unit
dispatch and potential coordination issues.

The proposed framework incorporates different metrics of
flexibility and can be used by DSOs in the following applica-
tions. First, ranking flexible units by their contributions to the
aggregated network flexibility identifies the most critical units
in the network and provides information on the structure and
diversification of flexible resources. Second, cost-based and
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surplus-based ranking can serve as a remuneration mechanism
for flexible units. As discussed in the paper, the surplus-based
allocation mechanism can give flexible units incentives to
declare their maximum capability at a lower cost. However,
the combinatorial nature of flexible power aggregation makes
the cooperative game formulation intractable for cases with
hundreds or thousands of flexible units. Future research will
try to overcome these limitations by using advanced clustering
and compression techniques, Shapley value approximations,
and cooperative game decompositions. It is also crucial to
investigate the incentive compatibility and manipulability of
the Shapley-based flexibility pricing.

APPENDIX
MAPPING OF LITERATURE AND RESEARCH DIRECTIONS

To illustrate the research gap in the existing literature and
highlight the contributions of this work, Fig. 12 presents a
mapping of the most relevant references and research direc-
tions. The figure defines five research directions and arranges
references according to their contributions to these topics.
It follows that the proposed framework includes Cooperative
Game Theory, TSO-DSO coordination, and flexibility markets,
with a stronger focus on ADN operation and aggregated P-Q
flexibility. By combining these areas, the proposed framework
enables estimating contributions of flexible units to aggregated
network flexibility and to each separate flexibility request,
ranking the criticality of flexible units for the flexibility service
provision, analysing the nonlinearity of the optimal flexible
unit dispatch and potential unit coordination issues, and in-
troducing flexibility remuneration mechanisms that include
availability and delivery (utilisation) payments. The closest
studies [4], [46] did not use the concept of flexibility P-Q
areas to analyse flexible power aggregation within distribution
networks, and study [25] did not use Cooperative Game
Theory to propose tracing, ranking and valuation mechanisms
for aggregated network flexibility.
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