

Advances in tractable methodologies to solve optimal power flow in transmission and distribution systems

Florin Capitanescu

Luxembourg Institute of Science and Technology (LIST) November 24-th 2022

OUTLINE

Motivation

- Procurement of ancillary services (congestion & voltage control) by DSO and TSO in day-ahead operation planning
- **DSO** level: stochastic multi-period AC optimal power flow (S-MP-OPF) problem
 - Tailored tractable solution algorithm through sequential linear approximations
 - Numerical performance
 - Research work led by Muhammad Usman (LIST)

• TSO level: stochastic multi-period AC security-constrained optimal power flow (S-MP-SCOPF) problem

- **Tailored** tractable solution algorithm through (**different!**) sequential linear approximations
- Numerical performance
- Research work led by Mohammad Iman Alizadeh (LIST)
- Conclusions and future work

ATTEST

POWER SYSTEMS OF THE FUTURE (2030+) AT BOTH DSO AND TSO LEVELS

- Characteristics:
 - High penetration of a myriad of distributed energy resources (DER), particularly variable renewable generation (RES)
 - Emerging additional flexibility options: energy storage systems and flexible "loads" (e.g. aggregated, deferable energy entities)
- RES variability and hardness to predict undermine reliable operation (e.g. congestion, voltage)
 - Operators need to procure energy flexibility, **including** from DER, in day-ahead and activate it (if needed) in real-time

CHALLENGES AT BOTH DSO AND TSO LEVELS

- Computation challenges in decision-making tools for DSO and TSO:
 - Uncertainty in renewables production modelling stochasticity
 - Energy coupling in time modelling multiple time periods interlinked
- The problem size is (number of uncertainty scenarios x number of time-periods) times larger!
- We envision major upgrades in the decision-making tools that must be able to solve:
 - At DSO level: stochastic multi-period AC optimal power flow (S-MP-OPF) problems
 - At TSO level: stochastic multi-period AC security-constrained optimal power flow (S-MP-SCOPF) problems
- Focus on tractability: solving sequentially a limited number of linear approximations of the full problems
- Assumptions:
 - Centralized optimization
 - At DSO level: adequate observability of the medium voltage (MV) grid and balanced operation

Elexibility procurement by DSOs in future smart grids including from DER through S-MP-OPF

DSO PROBLEM

DSO PROBLEM: SALIENT FEATURES OF EXISTING WORKS

KEY FEATURES OF EXISTING WORKS

Pof	Char	Flexibility	Resources	Mo	del Formu	lation
Kel.	Chai.	Continuous	Discrete	Accurate	Approx.	Relaxation
[4], [6]	S-SP	RES	OLTC			MISOCP
[5]	S-SP	RES				MISOCP
[7]	S-SP	RES				SOCP
[8]	S-SP	RES	FLs	MINLP		
[9]	D-MP	RES, FLs, EES, APF	OLTC		MILP	
[10]	D-MP	EES, FLs		NLP		
[11]	D-MP	RES, EES		NLP		
[12]	S-MP	RES, EES		NLP		
[13]	S-MP	RES, EES	OLTC	MINLP		
[14]	S-MP	RES	EES	MINLP		
[15]	S-MP	RES	EES, OLTC			MISOCP
[16]	S-MP	RES, FLs	EES, OLTC			MISOCP
[17]	S-MP	RES, EES			LP	
[18]	S-MP	RES			MILP	
[19]	S-MP	RES	EES		MILP	
[20]	S-MP	RES	EES, FLs		MILP	
This Work	S-MP	RES, APF	EES, FLs, OLTC		MILP	

Char.: characteristics, Approx.: approximation, APF: adaptive power factor

DSO PROBLEM: CHALLENGES

Some flexibility options (storage, flexible loads, OLTCs) involve binary variables

- The problem is mixed-integer non-linear programming (MINLP)
 - Computationally intractable: it cannot be used for practical applications
- A novel scalable solution is proposed, which relies on:
 - A mixed integer linear programming (MILP) model
 - Linear approximations of AC power flow equations and branch current expressions

LINEAR APPROXIMATIONS

• Linear active/reactive power flows and linear longitudinal branch current expressions:

$$\begin{split} P_{ij,t} &= \alpha_{i,t}^{p} \overline{V_{i,t}^{2}} + \alpha_{j,t}^{p} \overline{V_{j,t}^{2}} + \beta_{ij,t}^{p} \theta_{ij,t} + \gamma_{i,t}^{p} \\ Q_{ij,t} &= \alpha_{i,t}^{q} \overline{V_{i,t}^{2}} + \alpha_{j,t}^{q} \overline{V_{j,t}^{2}} + \beta_{ij,t}^{q} \theta_{ij,t} + \gamma_{i,t}^{q} \\ I_{ij,t}^{2} &= (g_{ij}^{2} + b_{ij}^{2})(\alpha_{i,t}^{I} \overline{V_{i,t}^{2}} + \alpha_{j,t}^{I} \overline{V_{j,t}^{2}} + \beta_{ij,t}^{I} \theta_{ij,t} + \gamma_{i,t}^{I}) \end{split}$$

- (α , β and γ) coefficients depend upon initial point-of-linearization
- the developed linear expressions are very accurate because:
 - they are linear in terms of V^2 and θ variables
 - + they include second order terms (Taylor expansion of trigonometric terms)

QUALITY OF LINEAR APPROXIMATIONS (BUS VOLTAGES)

TRACTABLE MILP MODEL

• Objective: Minimize the expected cost of DER output deviation from the market schedule

$$\min \sum_{t \in T} \left\{ \sum_{i \in G} c_{i,p}^{curt} P_{i,t}^{curt} + \sum_{i \in B} c_{i,b}^{str} (P_{i,t}^{dch} - P_{i,t}^{ch}) + c_{i,l}^{fl} \sum_{i \in F} (P_{i,t}^{od} + P_{i,t}^{ud}) \right\} \Delta T + c_{ij}^{oltc} \cdot \kappa_{if,t}$$

- subject to:
 - linear constraints:
 - · Linear active and reactive power balance
 - Linear branch flow loading limits
 - · Active and reactive power limits on the import from the HV upstream grid
 - Node voltage magnitude limits
 - mixed-integer linear constraints:
 - Active power curtailment and reactive power provision from RES
 - Constraints modelling the behaviour of flexible loads/electrical energy storage/OLTC

SEQUENTIAL LINEARIZATION ALGORITHM (SLA)

CASE STUDIES

• Proposed tractable approach is evaluated on the three distribution grids

Test	RES		E	EESs		Peak Load		
Cases	No.	Cap. (MW)	No.	Cap. (MW)	No.	P (MW)	Q (MVAr)	
34-bus	8	0.5/1	3	1	2	3.71	2.30	
UK 31-bus	8	2.6	3	1	4	6.51	2.14	
PT. 191-bus	23	2.0	10	1	20	18.75	6.16	

• 24-96 time periods and 10-50 RES uncertainty scenarios (generated using ARIMA)

- All networks provide flexibility in the form of:
 - Active power curtailment of RES
 - Reactive power provision from RES
 - Active power charging/discharging of an electrical energy storage
 - Active power over/under-demand of a flexible load
 - On-load tap changing transformer

NUMERICAL PERFORMANCE ON 34-BUS GRID

	Optimality	Cor	nstraints Viola	tions*	IL Approximation Error		SLA	Iter.		Pro	blem Stat	istics and	Compu	tational '	Fime	
FOs	Gap	No	May (0%)	< 10%	Max	Mean	п	OI	Model M0 Model M1				1	SLA		
	(%)	NO.	Max (%)	≤ 1%	Error (pu)	Error (pu)	ш	OL	BV	CV	CSTR	Time	BV	CV	CSTR	Time
FO 1	0.05	0	2.60×10^{-4}	0	1.1×10^{-5}	2.9×10^{-8}	2	1	0	18720	35040	16.4	0	19200	58800	3.2
FO ₂	0.02	0	2.53×10^{-4}	0	8.6×10^{-6}	1.9×10^{-6}	2	1	2160	19200	36000	3600*	2160	20880	66000	13.3
FO 3	0.07	0	2.61×10^{-4}	0	5.1×10^{-6}	2.5×10^{-7}	2	1	0	20640	40800	20.9	0	21120	64560	3.0
FO 4	0.06	0	2.54×10^{-4}	0	2.0×10^{-5}	4.9×10^{-6}	2	1	2160	21120	41760	3600*	2160	22800	71760	16.3
FO 5	0.03	0	2.60×10^{-4}	0	3.7×10^{-4}	1.5×10^{-5}	2	1	720	21600	38640	94.3	720	22080	65010	11.8
FO 6	0.03	0	2.60×10^{-4}	0	1.4×10^{-5}	5.9×10^{-7}	2	1	480	19680	36020	33.7	480	20160	61220	9.8
FO 7	0.02	0	2.32×10^{-4}	0	2.3×10^{-4}	9.1×10^{-6}	2	1	1200	22560	39620	93.4	1200	23040	66980	13.9
FO 8	0.23	0	2.58×10^{-4}	0	2.6×10^{-5}	1.4×10^{-6}	2	1	1200	24480	45140	71.6	1200	24960	72740	17.0
FO 9	0.26	0	2.60×10^{-4}	0	3.5×10^{-5}	4.9×10^{-6}	2	1	3360	24960	46100	3600*	3360	26640	79940	23.1

Iter. = iteration; CSTR = constraints; CV = continuous variable; BV = binary variable; IL = inner loop; OL = outer loop;

CONCLUSIONS

- Extensive results demonstrate **empirically** (we don't have a mathematical proof of convergence!) that:
- regarding **solution** accuracy, the proposed SLA provides an **optimal** and **feasible** solution:
 - The optimality gap is nearly 0% (its worst value is 0.21%) in all test cases under all flexible options.
 - AC-feasible solution is obtained within few SLA iterations
 - the accuracy of developed linear approximations remains intact under stressed operation conditions
- regarding computational efficiency, the proposed SLA reduces the solution time by a factor of 12-30 wrt MINLP (when this converges)
 - The SLA outperforms alternative linear models
 - Furthermore, the solution time of SLA remains moderate (below one hour) for the 191-bus system under larger number of scenarios (up to 50) or time-periods (up to 96)
- Scalable (by extrapolation) to grids up to 1000 nodes but under limited number of binary variables (storage/flexible loads)
- Works well on both radial and weakly-meshed distribution grids

ATTES

FOR FURTHER READING

- Problem formulation:
 - [1] M. Usman, F. Capitanescu, A stochastic multi-period AC optimal power flow for provision of flexibility services in smart grids, EEE PowerTech conference, 2021.
- Derivation of the linear expressions:
 - [2] M. Usman, F. Capitanescu, A New Second-Order Linear Approximation to AC OPF Managing Flexibility Provision in Smart Grids, IEEE SEST Conference 2021.
- Solution algorithms:

LIST.

- [3] M. Usman, F. Capitanescu, A Novel Tractable Methodology to Stochastic Multi-Period AC OPF in Active Distribution Systems, IEEE Transactions on Power Systems, in press, 2022.
- [4] M. Usman, F. Capitanescu, Three Solution Approaches to Stochastic Multi-Period AC Optimal Power Flow in Active Distribution Systems, IEEE Transactions on Sustainable Energy, in press, 2022.

The code source of [3] will be open early next year on ATTEST repository: stay tunned!

TSO PROBLEM

- S-MP-SCOPF problem for flexibility procurement by TSO from:
 - conventional generators
 - RES
 - storage
 - flexible "loads"
- Nonlinear and non-convex constraints:
 - Nodal AC active power balance
 - Nodal AC reactive power balance
 - Thermal limits of power lines/transformers
- The problem is **approximated** as non-linear programming
 - Computationally heavy: it cannot be scaled for practical applications

TSO METHODOLOGY PRINCIPLES

- A novel tractable solution methodology, which integrates:
 - A linear programming (LP) model inspired from [R]
 - Model linearized in the space of V^2 and θ variables
 - DC model augmented with voltage dependent terms and nodal reactive power balance equation
 - N-1 security assessment based on AC power flow
 - ARIMA models
 - speed-up techniques (constraints selection and tightening)
- The linear model from [R] (for single-period deterministic AC-OPF) was extend significantly by considering jointly:
 - contingencies
 - uncertainty scenarios
 - multiple time periods
 - emerging flexible options
 - here and now and wait and see decisions
 - as well as validate it numerically in various and stressed operating conditions

[R] Z. Yang, H. Zhong, A. Bose, T. Zheng, Q. Xia, C. Kang, A linearized OPF model with reactive power and voltage magnitude: A pathway to improve the MW-only DC OPF, IEEE Transactions on Power Systems, vol. 33, no. 2, pp. 1734–1745, 2017.

SALIENT FEATURES

MODEL FEATURES OF EXISTING SCOPF APPROACHES

	model	deterministic	multiple	operation	flexibility	AC	scala-
		single-period	time periods	uncertainty	resources	model	bility
-	[8]- [19]	Х				Х	Х
	[20], [23]	Х					Х
	[21]	Х					
	[30]			Х		Х	
	[31]			Х			Х
	[32]		Х		Х		
	[33]			Х			х
	[34]			Х		Х	
	[35]			Х		Х	
	[36]			Х		Х	
	[37]		Х	Х			Х
[[38]		Х	Х	Х	DC	Х
	[39]		Х				
	[40]		Х			Х	
	our [42]		Х	х	Х	Х	
	Proposed		×	×	v	SLP	v
	rioposeu		^	^	^	of AC	^

SEQUENTIAL LINEARIZATION ALGORITHM

Yes

SEQUENTIAL LINEARIZATION ALGORITHM

CASE STUDIES

Proposed tractable approach is evaluated on the two transmission grids

At /	1						
system	N	L	G	R	S	K	T
Nordic32	60	88	23	5	10	34	24
Portugal	304	554	209	24	10	21	24
1X							

2 storages and 3 flexible loads

- 24 time periods and 10 RES uncertainty scenarios (generated using ARIMA)
- All networks provide flexibility in the form of:
 - Active power curtailment of RES, reactive power provision from RES
 - Active power charging/discharging of an electrical energy storage
 - Active power over/under-demand of a flexible load

CASE STUDY: NORDIC32 SYSTEM

Performance	Constraint		Case #3 (High stress)							
metrics	type	initial	Store 1	Store 2		Stage 3				
		muai	Stage 1	Stage 2	iter 1	iter 2	iter 3			
Nb. constr. viol. in normal state	Voltages	415	295	33	5	0	0			
	Flow limits	91	0	7	1	0	0			
Nb. constr. viol.	Voltages	6,273	3153	355	42	234	0			
after contingencies	Flow limits	27,220	1,001	682	78	61	0			
Total constr. viol.	-	33,999	4,449	1,077	126	295	0			
Objective (€)	_	-	213,562	216,502	217,371	217,433	217,410			
Time (s)	_	-	132	162	136	120	140			

NORDIC32 SYSTEM: COMPARISON WITH IPOPT

IPOPT

Cases		proposed	S-MP-AC-SCOPF		
Cases	Variables	Constraints (Avg.)	Variables	Constraints	
Cases #1, #2, #3	1,628,520	4,438,895	1,628,520	3,678,623	

IPOPT

	propo	sed	S-MP-AC	C-SCOPF		
Cases	Obj.	time	Obj.	time	Obj. dev.	time red.
	(€)	(s)	(€)	(s)	(%)	(%)
Case #1	193,225	672	193,824	4,753	0.30	85.8
Case #2	221,926	942	222,408	7,451	0.21	87.3
Case #3	217,410	690	215,767	16,656	0.76	95.8

CASE STUDY: PORTUGUESE SYSTEM

Performance	Constraint	Case #3 (High stress)							
metrics	type	initial	Stage 1	Stage 2	Stage 3				
		muai	Brage 1	Stage 2	iter 1	iter 2			
Nb. constr. viol. in normal operation	Voltages	0	1	0	0	0			
	Flow limits	119	57	59	2	0			
Nb. constr. viol.	Voltages	0	315	0	0	0			
after contingencies	Flow limits	27,632	2,245	465	151	0			
Total constr. viol.	-	27,751	2,618	524	153	0			
Objective (€)	-	_	448,267	448,609	453,326	452,322			
Time (s)	_	_	544	765	851	725			

• The methodology is able to reduce progressively, at each stage or iteration, the number and magnitude of thermal or voltage violated constraints until reaching feasibility.

PORTUGUESE SYSTEM: COMPARISON WITH IPOPT

IPOPT

Cases		proposed	S-MP-AC-SCOPF		
	Variables	Constraints (Avg.)	Variables	Constraints	
Case #4	2,351,280	7,240,922	2,351,280	5,287,082	
Cases #5, #6	4,679,280	14,415,522	4,679,280	10,527,282	

2 times more scenarios

IPOPT

	proposed		S-MP-AC	C-SCOPF		
Cases	Obj.	time	Obj.	time	Obj. dev.	time red.
	(€)	(s)	(€)	(s)	(%)	(%)
Case #4	421,557	2,370	420,332	27,210	0.29	91.2
Case #5	411,724	2,711	410,376	72,905	0.32	96.2
Case #6	452,322	2,885	451,333	73,510	0.21	96.0

CONCLUSIONS

- For the first-time the most complete and challenging uncertainty-aware and flexibility-driven SCOPF problem to date, the S-MP-SCOPF, is solved with acceptable precision and speed.
- Extensive results demonstrate **empirically** (we don't have a mathematical proof of convergence!) that:
- regarding **solution accuracy**, the proposed methodology provides a **near-optimal** and **feasible** solution:
 - The optimality gap is small (0.21% to 0.76%) in all test cases
 - AC-feasible solution has been reached after solving four to five large LP problems
- regarding computational efficiency, the proposed methodology is 8-10 times faster than IPOPT solver for NLP
 - The methodology outperforms alternative linear models
 - It takes overall 15 minutes for the Nordic system and 45 minutes for the Portuguese system
- Further work: scalability to larger systems via decomposition and calculations parallelization
 - waiting for quantum computers ©

FOR FURTHER READING AND CODE SHARING

- Problem formulation:
 - [1] M.I. Alizadeh, M. Usman, F. Capitanescu, Envisioning security control in renewable dominated power systems through stochastic multi-period AC security constrained optimal power flow, International Journal of Electrical Power & Energy Systems 139, 107992, 2022.
- Solution algorithm:
 - [2] M.I. Alizadeh, F. Capitanescu, A Tractable Linearization-Based Approximated Solution Methodology to Stochastic Multi-Period AC Security-Constrained Optimal Power Flow, IEEE Transactions on Power Systems, in press, 2022.

The code source of [2] will be open this early next year on ATTEST repository: stay tunned!

Thank you for your attention!

Contacts:

energywebinars@inesctec.pt

http://energywebinars.inesctec.pt/