

WP4
Predictive Management Tools

for Transmission and

Distribution Systems Operation

Tool for State Estimation of
Distribution Networks

D4.4

The sole responsibility for the content published on this document

lies with the authors. It does not necessarily reflect the opinion of

the Innovation and Networks Executive Agency (INEA) or the

European Commission (EC). INEA or the EC are not responsible for

any use that may be made of the information contained therein.

Ref. Ares(2022)7200920 - 18/10/2022

TOOL FOR STATE ESTIMATION OF DISTRIBUTION NETWORKS

WP4

1 | 23

DOCUMENT CONTROL PAGE

DOCUMENT
D4.4 – Tool for State Estimation of Distribution
Networks

TYPE Report

DISTRIBUTION LEVEL Public

DUE DELIVERY DATE 30 / 08 / 2022

DATE OF DELIVERY 18 / 10 / 2022

VERSION V0.5

DELIVERABLE RESPONSIBLE KONČAR – DIGITAL

AUTHOR(S)
Hrvoje Keko, Donata Borić, Zlatan Sičanica, Jakov
Krstulović Opara, Leila Luttenberger Marić

OFFICIAL REVIEWER(S) Florin Capitanescu, Filipe Joel Soares

DOCUMENT HISTORY

VERSION AUTHORS DATE CHANGES

0.1
Hrvoje Keko
KONČAR-DIGITAL

10 / 06 / 2022 Initial ToC version

0.2
Hrvoje Keko
KONČAR-DIGITAL

30 / 07 / 2022
Description of the context, functional
specification

0.3

Donata Borić, Leila Luttenberger
Marić, Zlatan Sičanica, Hrvoje
Keko
KONČAR-DIGITAL

30 / 08 / 2022
Full specification of CIM integration,
topological processing and load estimation
modules

0.4
Hrvoje Keko, Jakov Krstulović
Opara, Zlatan Sičanica
KONČAR-DIGITAL

16 / 09 / 2022 Integral version of the document

0.5
Hrvoje Keko, Zlatan Sičanica
KONČAR-DIGITAL

03 / 10 / 2022 Corrected full version of the document

0.6
Florin Capitanescu
LIST

13 / 10 / 2022
Review, structural and contextual
improvements

0.7
Hrvoje Keko
KONČAR-DIGITAL

16 / 10 / 2022
Final corrections and accepted reviewer
suggestions

1.0
Filipe Joel Soares
INESC TEC

16 / 10 / 2022 Submission of the deliverable

TOOL FOR STATE ESTIMATION OF DISTRIBUTION NETWORKS

WP4

2 | 23

Table of Contents

1. CONTEXT, CONCEPTUAL AND FUNCTIONAL DESCRIPTION ... 5

1.1. Context: State estimation in distribution networks .. 5

1.2. Topology Processing: Conversion of Node-breaker to Bus-branch model 6

1.2.1. Physical Equipment Modelling and Node-breaker Model ... 6

1.2.2. IEC CIM connector ... 6

1.2.3. Topological Processing and Creation of the Bus-branch Network Model 8

1.3. Important assumptions on topology processing context ... 13

1.4. Topology processor implementation .. 14

1.5. Load calibration implementation ... 18

1.6. Other implementation details and future work.. 20

2. REFERENCES .. 23

List of Figures

Figure 1 – Illustration of the State Estimation problem .. 5

Figure 2 – Different business contexts of a typical DSO .. 7

Figure 3 – Data exchange component between the ATTEST toolbox and other systems 13

Figure 4 – Tool wrapper as an environment for the tool to run .. 13

Figure 5 – Data exchange components breakdown .. 14

Figure 6 – Exploratory analysis of the dataset for Koprivnica HEP ODS network 19

Figure 7 - Overview of all implemented state estimator modules .. 20

Figure 8 – An example of state estimator results visualization ... 21

TOOL FOR STATE ESTIMATION OF DISTRIBUTION NETWORKS

WP4

3 | 23

Abbreviations and Acronyms

ACRONYM / ABBREVIATION Extensive form

AMR Automated Meter Readout

CGMES Common Grid Model Exchange System

CIM Common Information Model

DMS Distribution Management System

DSO Distribution System Operator

ENTSO-E
European Network of Transmission System Operators for
Electricity

ERP Enterprise Resource Planning

GIS Geographic Information Systems

ID Identifier

IEC International Electrotechnical Commission

JSON JavaScript Object Notation

LV Low voltage

MV Medium voltage

SCADA Supervisory Control and Data Acquisition

TSO Transmission System Operator

TOOL FOR STATE ESTIMATION OF DISTRIBUTION NETWORKS

WP4

4 | 23

Summary

The deliverable titled “Tool for State Estimation of Distribution Networks” is the only deliverable of the

task T4.3 of the project. This task aims to develop a state estimator for the MV grids of the future, which

will feed the real-time OPF developed in T4.2. Unlike the transmission system, the crucial challenge of

state estimation in MV grids is the scarcity of real-time monitoring across the network, so a key task is

to generate the coherent set of pseudo-measurements. This deliverable first provides a wider context,

and then focuses on the actual implementation within that context.

As several of the tools in the ATTEST project require the bus-branch network model in a format

compatible with the MATPOWER tool, state estimation is split into two parts – topology processing

from the node-breaker model typically used in SCADA systems and the load calibration.

The architecture of the tool allows deploying it in a tightly knit fashion with the MV SCADA systems in

the DSO data centre. Furthermore, the architecture of the tool allows tailoring the pseudo-

measurement estimation tool to the operational context. Where more fine-grained data is available, a

more sophisticated and more precise model can be used, while in cases of very low data availability,

robustness is the desired characteristic.

TOOL FOR STATE ESTIMATION OF DISTRIBUTION NETWORKS

WP4

5 | 23

1. Context, conceptual and functional description

1.1. Context: State estimation in distribution networks

The classic state estimation problem in transmission networks is well-established and well-researched

problem, for which there is significant body of works [1]. The problem of state estimation consists in

computing the electric system state i.e. a set of coherent voltage magnitudes and angles. This problem

can in turn be broken down into subproblems of network topology estimation, observability analyses,

gross errors processing and elimination and parametric or structural errors processing.

FIGURE 1 – ILLUSTRATION OF THE STATE ESTIMATION PROBLEM

In the figure 1 above, the problem of state estimation is illustrated. The system state is the vector 𝑋

which consists of voltage magnitudes 𝑉𝑖 and voltage angles 𝜃𝑖. A set of power flow equations ties the

values at the nodes.

The task of state estimation is finding the probability the state vector explains the data. With a certain

error metric providing a measure of distance, the state estimation becomes a problem of constrained

optimization. Classic techniques use the least squares method, Gauss-Newton methods and in more

recent cases the methods based on information theoretic learning fundamentals [2].

However, for the medium voltage and for the low voltage distribution networks, the state estimation

problem is quite different. In case of transmission networks, the nodes are typically all covered by

measurements at different time scales and in most cases also with redundant information.

In distribution networks, the data set is much scarcer. Essentially, the problem is that the real time

monitored values do not cover the MV network.

There are measurements in a partial set of MV substations, some of which are not being read out in

real time. Network parameters such as line lengths and impedances are relatively static and can be

collected from the business systems in the DSO. Switch statuses and the part of the data that is read

from the network in real-time can be collected from the medium voltage SCADA system. An additional

issue with such real-time metered data is that this type of metering at substation level is used in system

management and operation and not in billing, so often this value is designed as only an indicative to

the dispatcher in the control room, while the calibrated meters providing values to be used in billing

systems are normally read out with automated meter readout (AMR) systems.

TOOL FOR STATE ESTIMATION OF DISTRIBUTION NETWORKS

WP4

6 | 23

To complete the state vector in a distribution network, an estimation of correct loads in the network

must be done so the MV network state estimation consists of two principal parts:

 Estimation of topology and network parameters

 Estimation of network loads

The state estimation tool is designed with these two main building blocks in mind, explained in the

following chapters.

1.2. Topology Processing: Conversion of Node-breaker to Bus-branch model

1.2.1. Physical Equipment Modelling and Node-breaker Model

The need to explicitly model physical equipment and devices into the SCADA has resulted in them

relying on a so-called node/breaker network model.

Namely, the SCADA systems typically operate on a level of commands and signals – and a basic SCADA

concept does not have a notion of any entity aggregating these commands, nor is the data semantics

modelled directly. In other words: a signal measuring temperature of transformer windings and a signal

measuring current or voltage do not differ substantially. Both are numeric signals, and the basic concept

of a SCADA system does not aggregate them semantically.

The principal benefit of a node-breaker model is that the signals directly correspond to the physical

components of the industrial automation system being controlled.

In this context, most electrical companies in the world were using their own internal ways of describing

network elements so it was important to come up with standardized model, so-called CIM (Common

Information Model), which everyone can use to easily exchange information. The most successful use

case of IEC CIM is the ENTSO-E level Common Grid Exchange Model (CGMES), utilized among the TSOs

to exchange grid models in a compatible way [3]. In late 2021, the European level model has been

successfully and automatically assembled from partial CGMES-based network models of European

countries. The IEC CIM is described in the IEC 61968 [4] and IEC 61970 [5] series of standards. It is

designed as an object oriented standard and is in practice an ontological standard defining the classes

that representing node/breaker model in detail.

1.2.2. IEC CIM connector

Admittedly, at first, discussing CIM might sound unrelated to the problem of state estimation. This is

not the case: the IEC CIM has become a de facto standard for information exchange in all levels of

business operations in a typical modern DSO. The lack of input data is the most significant challenge for

the subtask of load estimation within medium voltage state estimation, being compliant with this

standard significantly lowers the barrier to including external data.

For example, modern SCADA systems are capable of building and exporting their internal network

model in the format compatible with CIM. Similarly, tools often used in the DSO day-to-day operation

often use CIM-compatible input data to interact with other systems. The reality of the business

operations in a typical DSO is represented in the following figure.

TOOL FOR STATE ESTIMATION OF DISTRIBUTION NETWORKS

WP4

7 | 23

FIGURE 2 – DIFFERENT BUSINESS CONTEXTS OF A TYPICAL DSO

The business context is that in each business need of the DSO, e.g. automated meter readout, ERP or

the SCADA system, a separate islanded software system has been started up to take care of that

business needs. These systems often end up as partially integrated subsystems, and we run into the

problem of the object not holding the same identifier in all the subsystems. Effectively, the same object

has a part of its attributes defined in one system, and the rest of the attributes in other systems. For

example, a simple electricity meter may have one ID in the ERP system, and a completely another one

in the AMR system, with perhaps a third one in the asset management system. Effectively, there are

multiple loosely coupled sources of truth for the same object. This is not surprising as the data required

for expansion planning context is quite different from the SCADA operational context.

Yet, the system and the DSO is the same, and this discrepancy often introduces friction into the DSO

business context. To address this, KONČAR has developed an integration solution, compliant with the

IEC CIM that allows respecting the semantic description of data according to the IEC CIM standard.

Additionally, this solution allows bitemporal versioning supporting time of awareness and time of

validity timestamps for each of the entities and allows multi-branch tracking like source code control

systems. Multi-branching allows each of the subsystems to “look” at the same system and seeing

different and sometimes differing subsets of the information.

A derivative of the above solution is included in the deployment of ATTEST in the Croatian pilot and

ATTEST tools benefit from the indirect compatibility with CIM and easier integration into the DSO

systems. This is more relevant for the context of integration, so it is described in more detail in WP6

deliverables.

The important takeaway for the state estimation context is that the input network model will arrive in

the node-breaker form, appropriate for tracking the status of network elements, but unfortunately not

appropriate for the calculations and optimizations of the network as virtually none of the ATTEST tools

uses this type of network model.

TOOL FOR STATE ESTIMATION OF DISTRIBUTION NETWORKS

WP4

8 | 23

1.2.3. Topological Processing and Creation of the Bus-branch Network Model

Virtually all optimizations and calculations in the transmission network require a correct network

topology. The network topology can be determined from statuses of switches (breakers and

disconnectors) and this creates an abstract model known as bus/branch network model.

A switch is not an element which is a part of calculations such as power flows – a closed switch is

effectively invisible to such calculations, and an open switch is a break in the network. A closed switch

between the two physical nodes effectively aggregates these two nodes into the same abstract bus. An

open switch means the two physical nodes must correspondingly be represented as two buses in the

bus-branch model with no branch between them.

The bus-branch model eliminates switches based on their open/closed status and groups the so-called

connectivity nodes, connected with closed switches, into a single topological node (bus). The other

elements of electrical network are modelled as topological branches and this process of conversion is

called network topology processing.

The collected statuses of switches may not be true to the current situation so it is important to keep

the representation of each element from the node/breaker model so the dynamic changes can be

applied back to the original node-breaker model. In other words, the conversion should be possible

from the node-breaker model to bus-branch model and vice versa.

Additionally, if the original representation of the node-breaker model is kept track of, then it is not

necessary to rebuild the bus-branch model from scratch on each switching operation. Only the parts of

the model affected by a switching operation compared to the previous instance must be altered.

The actual physical elements in the CIM network model used in topological processing are: Switch,

BusBarSegment, ACLineSegment, EquivalentInjection and EnergyConsumer. The other models in CIM

model are: ConnectivityNode and Terminal.

The classes in CIM have multiple attributes, but for the first step in processing only the attribute for

mRID of element is needed. The mRID is a unique identifier of an object in CIM, immutable over the

lifetime of the object. Put differently: knowing the mRID is enough to uniquely identify and find the

original element in the bus-breaker model. For this reason, the topological processor relies on the mRID

as unique identifiers of the corresponding equipment.

 Switch: has 2 associated terminals and subclasses Breaker and Disconnector

 BusBarSegment: has 1 associated terminal.

 ACLineSegment: has 2 associated terminals and parameters for resistance (r), inductance (x),

shunt susceptance (bch), shunt conductance (gch) and conductor length; all physical values that

are inputs to the impedance calculation

 EquivalentInjection: has 1 associated terminal.

 EnergyConsumer: has 1 associated terminal.

 ConnectivityNode: has one or more associated Terminals, it aggregates these Terminals

 Terminal: has a reference for belonging ConnectivityNode (the ConnectivityNode it belongs to)

and ConductingEquipment, plus ordinal number of terminal for belonging physical element –

basically specifies the incidence with the above.

TOOL FOR STATE ESTIMATION OF DISTRIBUTION NETWORKS

WP4

9 | 23

With the context provided above, the topological processing of the node-breaker model into the bus-

branch model is defined as follows:

A switch is in closed state if its status is equal to 1, otherwise it is open.

If there is a closed switch between two connectivity nodes cn1, cn2 and, e.g., cn1 < cn2 (where “<” is a

comparison or ordering operator to determine the higher ranked element), then cn1 becomes cn2. This

process is called merging of the nodes (into the lexicographically higher one, or whichever is preferred

and implemented via a comparison operator).

The comparison operator is used so the aggregation is predictable and the order is explicitly specified,

e.g. so that it is clear the node A1 and node A2 get always get aggregated into the bus A1.

The required input variables for topological processing:

 node set: sorted mRIDs of all connectivity nodes,

 asset map: mRID of the element is key to identify the actual instance of that element and

 switch map: mRID of the switch is the key for the (externally retrieved) status of that switch.

These are the additional mappings:

 terminal map: the mRID of physical element is a key for the list of mRIDs of associated terminals.

The initialization of this map is based on ConductingEquipment element referenced from the

Terminal. From the asset map, all Terminal elements with the same mRID of reference for

ConductingEquipment as key-mRID must be found. The mRIDs of these Terminal elements are

put in a list. This lists the elements incidental to this Terminal.

 connectivity map: the mRID of connectivity node is a key for the list of mRIDs of the associated

terminals. The initialization of this map is based on the ConnectivityNode element, referenced

from the Terminal. From the asset map all Terminal elements which have same mRID of

reference for ConnectivityNode as key-mRID need to be found. mRIDs of these Terminal

elements are put in a list.

 merge map: the mRID of the connectivity node is a key for the mRID of connectivity node into

which it is merged. The initialization of map is map[key]=key, i.e. at the start of topological

processing the connectivity node only maps or merges into itself.

An additional simplification step is done prior to the actual topological processing: the

ACLineSegments are merged (aggregated) into an ACLine and therefore the nodes between the line

segments are dropped from the topological processing. These can’t be aggregated as there is no

switch and in the branch model the line segments combined together actually represent a branch.

For every element in asset map (iterate through keys, assuming they are

sorted):

 If it is ACLineSegment:

 Initialize ACLine, mRID is set to mRID of current ACLineSegment

 From terminal map, the first associated terminal of current

 ACLineSegment is the final first terminal of ACLine, and second

 terminal is trial second terminal

TOOL FOR STATE ESTIMATION OF DISTRIBUTION NETWORKS

WP4

10 | 23

 In first associated Terminal, change reference for

 ConductingEquipment from current ACLineSegment to new ACLine

 (ordinal number stays the same) number is set to 1

 Attributes r,x,bch,gch and conductor length of ACLine are set to

 the same attributes of ACLineSegment

 From node set remove ConnectivityNode of second terminal (from

 reference of Terminal element find associated ConnectivityNode)

 For this element in asset map change its value to ACLine, and go to

 next element While next element in asset map is ACLineSegment:

 From terminal map, second associated terminal of current

 ACLineSegment is trial second terminal of ACLine

 Attributes r,x,bch,gch and conductor length of ACLineSegment

 are summed up respectively with attributes of ACLine number is

 increased by 1

 From node set remove ConnectivityNode of both terminals (from

 reference of Terminal element find associated ConnectivityNode)

 From asset map delete key for this ACLineSegment and go to next

 element in map

 From terminal map delete key for this ACLineSegment

 # Now we have the last line segment

 From terminal map, second associated terminal of current

 ACLineSegment is final second terminal of ACLine

 Attributes r,x,bch,gch and conductor length of ACLineSegment are

 summed up respectively with attributes of ACLine

 number is increased by 1

 From node set remove ConnectivityNode of first terminal (from

 reference of Terminal element find associated ConnectivityNode)

 From asset map delete key for this ACLineSegment

 From terminal map delete key for this ACLineSegment

 Using mRID of ACLine as key in asset map, replace value with

 instance of this ACLine (from first segment of line to whole line)

 Using mRID of ACLine as key in terminal map, replace value with new

 list which consist of first and second terminal of this ACLine

 For second associated Terminal of ACLine, change its reference from

 ACLineSegment to ACLine (ordinal number stays the same)

 # Whole line is now connected

TOOL FOR STATE ESTIMATION OF DISTRIBUTION NETWORKS

WP4

11 | 23

With the above definitions and AC line simplification, the topological processing algorithm specification

follows. The cursive text in brackets specifies the operations above.

For every node in node set

 Get the list of terminals from the connectivity map – the key is the

mRID of current node

 For every terminal in list

 If it has a connected closed switch (from asset map get instance of

 Terminal element and check if its reference for ConductingEquipment

 is switch; if it is, use mRID of that switch as key in switch map

 and check if its status is equal to 1)

 Get the other terminal of that switch (from the terminal map

 get the two terminals and choose the other one)

 If there were closed switches, find max of saved mRIDs

 For current and saved nodes, except one with max mRID, in merge

 map rewrite value with max mRID

 Transfer all terminals from nodes with smaller mRIDs to the

 node with max mRID

 (in connectivity map for saved nodes with smaller mRID move

 values to value of max key-mRID)

 # Because some nodes that represented maximum in one iteration

 # could represent minimum in some of next iterations, it is

 # necessary to iterate through node set in reversible way and make

 # adjustments to merge map. The connectivity map is updated.

 For every node in node set (in reversible way)

 Merge node to associated maximum node

 (merge map[mRID] = merge map[merge map [mRID]])

 # If for a node is valid: merge map[mRID] = mRID, it is called

 # final node. TopologicalNode is a set of connectivity nodes which

 # are merged into same ConnectivityNode.

 For every key-node in merge map

 Put it in the set of associated TopologicalNode

 If a TopologicalNode doesn’t exist yet, make a new one

The final output of the topological processor is a topological map, where the keys are the mRIDs of final

nodes for the associated TopologicalNodes.

Finally, the analogous algorithm is also utilized to calculate the incidence and the elements of nodal

admittance matrix for the power system: for each node in the topological map, the set of connectivity

nodes for these nodes is processed and the admittance is calculated. Essentially, this topological

processing model aggregates the original nodes into buses of the modeled power system and calculates

the impedances between the nodes.

Set dimension N of matrix to zero

For every key in merge map

 If node is final node

 mRID of node is key in final map for value N

 N is increased by one

Now we know number of buses in the model

Matrix with dimension N is set to zero

TOOL FOR STATE ESTIMATION OF DISTRIBUTION NETWORKS

WP4

12 | 23

 For every node in merge map:

 If node is final node:

 Go trough connectivity list of that node:

 If reference for ConductingEquipment of Terminal is ACLine:

 From terminal map get the other Terminal of ACLine

 (where key is mRID of ACLine)

 From other Terminal take reference for ConnectivityNode

 For found ConnectivityNode, from merge map find

 TopologicalNode to which it belongs (key is mRID of

 found ConnectivityNode)

 Calculate admittance (Using attributes r, x from

 ACLine: admittance = r/(r^2+x^2) - j*[x/(r^2+x^2)])

 On place (final map[mRID of first node], final

 map[mRID of second node]) in matrix set value to:

 admittance*(-1)

 On place (final map[mRID of first node],

 final map[mRID of first node]) in matrix add up value

 of admittance

 On place (final map[mRID of first node],

 final map[mRID of first node]) in matrix add up shunt value

 (Using attributes gch, bch from ACLine:

 shunt = gch/2 + j * (bch/2))

TOOL FOR STATE ESTIMATION OF DISTRIBUTION NETWORKS

WP4

13 | 23

1.3. Important assumptions on topology processing context

Normally, the topological processing is seen as an integral part of the state estimation context. Given

the context of ATTEST, and as the relevant input data coming into ATTEST tools is essentially in node-

breaker format (be it from GIS or from SCADA system), we have decided to split the topological

processor into two halves and deliver the initial topological processing as a service for all the other

tools.

This way all the ATTEST tools effectively benefit from the topological processing and the conversion of

input data based on the node-breaker model into the bus-branch model, and the ATTEST toolbox can

be integrated with the rest of the software systems in the TSO or DSO.

FIGURE 3 – DATA EXCHANGE COMPONENT BETWEEN THE ATTEST TOOLBOX AND OTHER SYSTEMS

The ATTEST toolbox consists of several tools, each with their own requirements, inputs, and outputs.

While it is the task of the ATTEST WP6 to provide the integration details, a brief overview of the context

is provided here.

FIGURE 4 – TOOL WRAPPER AS AN ENVIRONMENT FOR THE TOOL TO RUN

In the integration context, each of the tools is wrapped into a wrapper that supplies the inputs and

takes care of the outputs delivered by the tool. In essence, each of the tools runs in an environment

closely resembling the one where it has been developed. This includes the formats of input and output

data, and consequently, also the network models.

Tool 1 Tool 2 Tool 3

I / O 1 I /O 2 I/O 3

Data exchange component

Other systems in the DSO / TSO

Tool 1

Input 1
CSV,

Matpower

Output
1

CSV,
Matpower

To
o

l w
ra

p
p

e
r

TOOL FOR STATE ESTIMATION OF DISTRIBUTION NETWORKS

WP4

14 | 23

FIGURE 5 – DATA EXCHANGE COMPONENTS BREAKDOWN

From the Figure 3, a wider context of the data exchange component is visible. It is tasked with

interfacing with other systems in the TSO and DSO and providing the tool wrappers with appropriate

inputs and outputs. The Figure 5 specifies the subcomponents of the data exchange component, one

of which must be the topology processor specified in Chapter 1.2.3.

This means that the topological processing is a service offered to virtually all the other tools. Here, a

pragmatic assumption is made that the obtained switch statuses are assumed to be generally correct,

so the resultant topology from the processing is immediately utilized as part of the input for all the

other ATTEST tools through the data exchange component and by placing the derived inputs into the

tool wrappers. No difference is made between the estimated switch statuses and the ones directly

inferred from the SCADA system. A caveat here is related to the parts of today’s MV networks, where

some MV/LV substations might not be covered by any type of measurements at all. By 2030, however,

we expect at least inferred switch statuses to be available. State estimation could support external

higher frequency measured values, that gather their measurements from the downstream meters at

the low voltage side. These measurements could generate additional switch statuses inferred from the

measurements and thus benefit the substations where no measurement equipment is installed.

 An interesting future step of the development would be integrating the estimator in a tighter fashion

with the SCADA software, as a part of the DMS functionalities. This way, the topology validity check

could be performed iteratively and automatically. The overall architecture of the estimator supports

this approach fully.

1.4. Topology processor implementation

Topology processor is implemented as a library that provides functions and classes that allow users to

connect indirectly to a CIM record database, implemented in the KONČAR PowerCIM solution.

The PowerCIM solution is KONČAR’s product that allows bitemporal versioning of CIM network models,

and for purposes of ATTEST project is also utilized as integrator towards CIM-aware systems in the TSO

or DSO.

The topology processor library queries the PowerCIM and collects the CIM elements generating the

bus-branch model and calculating admittance matrix based on connectivity nodes of the system.

This implementation follows the pseudocodes proposed in 1.2.3, with a minor difference in the way the

merge map handling vs. the connectivity map. For the admittance matrix the connectivity map is used

primarily to improve the performance as its structure is more condensed. Functionally, there are no

difference regarding the final calculated admittance values.

Data exchange
component

Adapters to TSO/DSO systems

PowerCIM (CIM repository)

Topology processor

Storage component

TOOL FOR STATE ESTIMATION OF DISTRIBUTION NETWORKS

WP4

15 | 23

Topological processor is implemented as a Python package. It assumes there is a live PostgreSQL

database which holds instance of PowerCIM and there are appropriate access rights. It also assumes

that the database contains an internal PowerCIM function:

recordat(lastbranchid integer,

 lastcommitid integer,

 lastvalidtime timestamp without time zone,

 cimclassids int4[],

 hmrids uuid[],

 mrids uuid[],

 pmrids uuid[],

 rnamelikes text[])

returns table(mrid uuid,

 mridtext text,

 rname text,

 cimclassid integer,

 cimclass text,

 pmrid uuid,

 fullobject jsonb)

As implemented, the topology package contains several modules that match the steps in topology

processing. These modules are:

 db – Python module handling database communication, provides a connection object with the

methods for connecting and executing common queries

 unprocessed - initializes data structures and different maps needed for the processing algorithm

 node_breaker - implementation of the first topology processor algorithm segment, which

detects connectivity nodes by analyzing the switch positions

 node_branch - implementation of the second topology processor algorithm segment, detects

line admittances and generates an admittance matrix between the connectivity nodes

Additionally, for the purpose of integrating with other subcomponents of the data exchange

component, illustrated in Figure 5, there is a server API provided that offers topological processor

functions as a web service.

The /api endpoint supports GET requests with the branch_id and commit_id parameters that are

passed to the PowerCIM to select the correct CIM network model.

The result is a JSON representation of the admittance matrix, whose structure respects the following

JSON schema:

type: object

required:

 - branch_id

 - commit_id

 - datetime

 - admittance_sparse_matrix

 - topological_nodes

properties:

 branch_id:

 type: int

 description: CIM repo branch id

 commit_id:

 type: int

TOOL FOR STATE ESTIMATION OF DISTRIBUTION NETWORKS

WP4

16 | 23

 description: CIM repo commit id

 datetime:

 type: int

 description: UNIX timestamp of the time when the snapshot was taken

 admittance_sparse_matrix:

 type: array

 items:

 type: object

 description: |

 Sparse matrix, represents connection between the

 topological

 node at row and col, with the admittance value. Rows and

 cols are indices of topological nodes under the

opologlical_nodes

 property.

 required:

 - row

 - col

 - value

 properties:

 row:

 type: int

 col:

 type: int

 value:

 type: array

 maxContains: 2

 description: |

 complex number, first value is the real and second

is

 the imaginary segment

 items:

 type: float

 topological_nodes:

 type: array

 items:

 type: array

 maxContains: 2

 description: |

 pair of topological node UUID (first UUID in the group by

 lexicographic order) and all element UUIDs belonging to

that

 node

 prefixItems:

 - type: string

 description: UUID, topological node id

 - type: array

 description: |

 ids of all elements belonging to the topological node

 items:

 type: string

 description: UUID

...

TOOL FOR STATE ESTIMATION OF DISTRIBUTION NETWORKS

WP4

17 | 23

Example request:

GET /api/branch_id=4&commit_id=1

Response:

{

 "branch_id": 4,

 "commit_id": 1,

 "timestamp": 1664181352,

 "admittance_sparse_matrix": [

 {"row": 0, "col": 0, "value": [1.1, 2.2]},

 {"row": 0, "col": 1, "value": [-1.1, -2.2]},

 {"row": 1, "col": 0, "value": [-1.1, -2.2]},

 {"row": 1, "col": 1, "value": [1.1, 2.2]},

 {"row": 3, "col": 3, "value": [5.3, 7.1]},

 {"row": 3, "col": 4, "value": [-5.3, -7.1]},

 {"row": 4, "col": 3, "value": [-5.3, -7.1]},

 {"row": 4, "col": 4, "value": [5.3, 7.1]},

],

 "topological_nodes": [

 ["c134850a-3d76-11ed-b16f-201e88d11df2", [

 "c134850a-3d76-11ed-b16f-201e88d11df2",

 "d05c1944-3d76-11ed-b16f-201e88d11df2"]],

 ["f4d6681a-3d76-11ed-b16f-201e88d11df2", [

 "f4d6681a-3d76-11ed-b16f-201e88d11df2"]],

 ["0bf53f62-3d77-11ed-b16f-201e88d11df2", [

 "0bf53f62-3d77-11ed-b16f-201e88d11df2"]],

 ["16094d7c-3d77-11ed-b16f-201e88d11df2", [

 "16094d7c-3d77-11ed-b16f-201e88d11df2"]],

 ["234b67ea-3d77-11ed-b16f-201e88d11df2", [

 "234b67ea-3d77-11ed-b16f-201e88d11df2"]]

]

}

This could be interpreted as the following admittance matrix:

1.1 + 2.2j -1.1 - 2.2j 0 0 0

-1.1 - 2.2j 1.1 + 2.2j 0 0 0

0 0 0 0 0

0 0 0 5.3 + 7.1j -5.3 - 7.1j

0 0 0 -5.3 - 7.1j 5.3 + 7.1j

Furthermore, adding the topological nodes interpretation we can see that the node c134850a-3d76-

11ed-b16f-201e88d11df2 and f4d6681a-3d76-11ed-b16f-201e88d11df2 are connected, with

admittance of 1.1 + 2.2j, and 16094d7c-3d77-11ed-b16f-201e88d11df2 is connected with 234b67ea-

3d77-11ed-b16f-201e88d11df2 with admittance of 5.3 + 2.2j. Lastly, the values on the diagonal the

represent shunt values of the individual nodes.

TOOL FOR STATE ESTIMATION OF DISTRIBUTION NETWORKS

WP4

18 | 23

1.5. Load calibration implementation

The task of load calibration is to take the best possible effort to estimate the loads at the nodes where

live measurements do not exist at all. Virtually the only measurements that can be had at these network

nodes are the cumulative measurements of all customers downstream, obtained from the billing

systems. These are typically not available at all in real time and normally these measurements don’t

carry the topological information. These values are typically only available as historical data, and even

then the granularity of the data may not be the desired one as not all users have smart meters.

While it is considerably realistic to assume that by 2030, the year the ATTEST developments target,

most of the end users will be covered with smart meters capable of producing 15-minute readouts, to

handle the transition period the load calibrator relies on the typical load curves, where 15 minutes

values are not available.

This approach uses the typical load curve inferred from the data, and, essentially, scales the values to

predict the value in the network nodes. Implicitly, the load calibrator classifies each of the network

nodes, and then estimates the load value based on the predictor input parameters, such as the season

or the time of day. The predictor input values can vary significantly. An example, not utilized here, can

be the local temperature or the level of deployment of electrical vehicles. It is reasonable to expect the

increase of external data that impacts the operation of the distribution network.

For training, the dataset provided by HEP DSO, a set of 15-minute values for load curves for four

seasons, split into business day and weekend (holiday) days are available, for the Koprivnica network.

The current version of the load calibrator is a relatively simple but robust estimator that uses the hybrid

of a simple lasso regression and a neural network-based estimator. In the training phase the estimation

error, compared to the measured values, is in worst cases around 17% of the peak load for a given

node. This is, however, the value that only uses the absolute value of load at the load points, with no

consideration on, e.g. the number of households at that connection point. A more fine-grained data

preparation method would result in a finer training dataset and better estimation performance.

The input dataset for this network is illustrated depicted in the figure below. The load calibration then

deduces the current season and the day type from the time when it is invoked, and passes these

inferred parameters to the previously trained estimator.

As with any forecasting and estimation task, the load calibration predictor is not generalized. It is highly

specific to the network and to the input dataset. Significant changes to the observed network would

require retraining and a new input data set.

TOOL FOR STATE ESTIMATION OF DISTRIBUTION NETWORKS

WP4

19 | 23

FIGURE 6 – EXPLORATORY ANALYSIS OF THE DATASET FOR KOPRIVNICA HEP ODS NETWORK

The final step of the state estimation procedure takes the estimated values of the loads and performs

the load flow, so the set of values is coherent. The power flow result compared with the measured

values, especially the ones at feeder level, provides a degree of quality evaluation for the estimated

state, i.e. a degree of coherence with the measured values. The criterion used is the maximum deviation

from the actual measured values, max |𝑉𝑒𝑠𝑡 − 𝑉𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑|.

TOOL FOR STATE ESTIMATION OF DISTRIBUTION NETWORKS

WP4

20 | 23

1.6. Other implementation details and future work

The state estimation tool is, essentially, a network model source for all tools that require the complete

model of the medium voltage network. As discussed earlier, this wider context resulted into a split into

two components, the topological processor and the load calibration or the pseudo measurement

estimation module. The core state estimation code is implemented in Python in a modular fashion,

relying on KONČAR open-source event-driven platform, as illustrated in Figure 7 below.

FIGURE 7 - OVERVIEW OF ALL IMPLEMENTED STATE ESTIMATOR MODULES

Besides interfacing through the CIM connector, using the event-driven platform that natively supports

SCADA protocols allows the usage of these protocols to couple the estimator more tightly with the MV

SCADA system to gather the live input data. Besides being able to interface with live data inputs, this

also allows eventual integration of the estimation results, using the same SCADA protocols. This could

allow the external SCADA GUI to visualize the state estimation results within the usual user interface.

An example of possible visualization of state estimator results is depicted below.

SCADA protocol
interface – Live
measurements

retrieval

CIM adapter
interface – External

data

Power Flow Calculator and
Validator Module

Pseudo Measurement
Generator Module

Event-driven platform External SCADA

Topology Processor Module

ATTEST Data
Exchange

Component (via
API)

TOOL FOR STATE ESTIMATION OF DISTRIBUTION NETWORKS

WP4

21 | 23

FIGURE 8 – AN EXAMPLE OF STATE ESTIMATOR RESULTS VISUALIZATION

The above visualization has been implemented in the state estimation tool development and uses the

widgets from the KONČAR PROZA Station SCADA platform to visualize the simulated measured values

together with the estimated ones.

Integrating with the principal SCADA system in the DSO might allow an additional manner of launching

the ATTEST tools, as well – these could be used as part of the distribution network management system.

This functionality exists but has only been tested and used during the development at the time of

writing this document. This is the reason for the dashed line towards the external SCADA system in

Figure 7.

With regards to the calculation modules, the topology processor serves as a gatekeeper towards the

ATTEST data exchange component, as described in previous chapters, and towards the comparatively

smaller power flow calculator module and pseudo measurement generator module.

All modules of the state estimator are implemented in Python programming language, utilizing several

libraries of which the most important are Pandapower used to calculate the power flows in the final

state estimation calculation step in the power flow calculator module. The key benefit of the modular

organization illustrated above is that the future development in any of the modules generally does not

affect the other modules. For instance, replacing or upgrading the pseudo measurement generator

module shouldn’t affect the topology processor module. Similarly, modifying another power flow

calculator does not affect the other modules.

TOOL FOR STATE ESTIMATION OF DISTRIBUTION NETWORKS

WP4

22 | 23

1.7. How to run the tools

As discussed in this document, the tool has been split into two parts: topology processor and pseudo

measurement generator.

The topology processor is designed to be run as part of the data exchange component, so it is not

intended to be run separately. However, it is possible to run it via a tool that allows running the GET

requests such as Insomnia, Postman or a simple curl command.

FIGURE 9 - TOPOLOGICAL PROCESSOR OUTPUT

The IP address in the request should point to the server where the topology processor is installed. The

parameters in the request are explained in the chapter 1.4 above and represent the selected CIM

network commit in the linked PowerCIM database. The user interface will allow user to select the

network while the identifiers will be passed in the backend. Similarly, the interpretation of the API

output is supposed to be handled by the subcomponent of data exchange component that creates the

MATPOWER file from it as most of the ATTEST tools require this format.

The pseudo load estimator is also not designed to be run as a separate module, however it can be run

from the command-line as well. It is a python module and has two principal modes of work: training

and running the estimator. In both modes the first parameter is the MATPOWER format of the network.

For training mode, a second parameter points to a CSV file with additional historical data for training,

by default historical load curves for the nodes that do not have direct measurements in SCADA. The

training mode runs the estimator. The training mode output is a pickle file where the configuration of

the estimator is saved.

In the estimation mode, the second parameter is that pickle file holding the pseudo load estimator

internal configuration, and the third parameter is the desired estimation timestamp, from which the

day of the week and the hour are inferred, and the estimation run. The results are returned in

Pandapower compatible JSON format. When it is run within the SCADA platform including the SCADA

platform HTML5 based user interface, then the screenshot of the main outputs of the state estimator

is depicted in the Figure 8.

TOOL FOR STATE ESTIMATION OF DISTRIBUTION NETWORKS

WP4

23 | 23

2. References

[1] A. Abur and A. G. Expósito, Power System State Estimation: Theory and Implementation, 1st edition.
New York, NY: CRC Press, 2004.

[2] V. Miranda, J. Krstulovic, H. Keko, C. Moreira, and J. Pereira, “Reconstructing Missing Data in State
Estimation With Autoencoders,” IEEE Trans. Power Syst., vol. 27, no. 2, pp. 604–611, 2012, doi:
10.1109/TPWRS.2011.2174810.

[3] “IEC 61970-CGMES:2018 | IEC Webstore | automation, cyber security, smart city, smart energy,
smart grid, CGMES.” https://webstore.iec.ch/publication/61124 (accessed Jun. 01, 2018).

[4] “IEC 61968-11:2013 | IEC Webstore.” https://webstore.iec.ch/publication/6199 (accessed Jun. 01,
2018).

[5] “IEC 61970-1:2005 | IEC Webstore | automation, cyber security, smart city, smart energy, smart
grid.” https://webstore.iec.ch/publication/6208 (accessed Jun. 01, 2018).

