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Summary 

The deliverable titled “Tool for State Estimation of Distribution Networks” is the only deliverable of the 

task T4.3 of the project. This task aims to develop a state estimator for the MV grids of the future, which 

will feed the real-time OPF developed in T4.2. Unlike the transmission system, the crucial challenge of 

state estimation in MV grids is the scarcity of real-time monitoring across the network, so a key task is 

to generate the coherent set of pseudo-measurements. This deliverable first provides a wider context, 

and then focuses on the actual implementation within that context.  

As several of the tools in the ATTEST project require the bus-branch network model in a format 

compatible with the MATPOWER tool, state estimation is split into two parts – topology processing 

from the node-breaker model typically used in SCADA systems and the load calibration.  

The architecture of the tool allows deploying it in a tightly knit fashion with the MV SCADA systems in 

the DSO data centre. Furthermore, the architecture of the tool allows tailoring the pseudo-

measurement estimation tool to the operational context. Where more fine-grained data is available, a 

more sophisticated and more precise model can be used, while in cases of very low data availability, 

robustness is the desired characteristic. 
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1. Context, conceptual and functional description 

1.1. Context: State estimation in distribution networks 

The classic state estimation problem in transmission networks is well-established and well-researched 

problem, for which there is significant body of works [1]. The problem of state estimation consists in 

computing the electric system state i.e. a set of coherent voltage magnitudes and angles. This problem 

can in turn be broken down into subproblems of network topology estimation, observability analyses, 

gross errors processing and elimination and parametric or structural errors processing. 

 

FIGURE 1 – ILLUSTRATION OF THE STATE ESTIMATION PROBLEM 

 

In the figure 1 above, the problem of state estimation is illustrated. The system state is the vector 𝑋 

which consists of voltage magnitudes 𝑉𝑖 and voltage angles 𝜃𝑖. A set of power flow equations ties the 

values at the nodes. 

The task of state estimation is finding the probability the state vector explains the data. With a certain 

error metric providing a measure of distance, the state estimation becomes a problem of constrained 

optimization. Classic techniques use the least squares method, Gauss-Newton methods and in more 

recent cases the methods based on information theoretic learning fundamentals [2]. 

However, for the medium voltage and for the low voltage distribution networks, the state estimation 

problem is quite different. In case of transmission networks, the nodes are typically all covered by 

measurements at different time scales and in most cases also with redundant information.  

In distribution networks, the data set is much scarcer. Essentially, the problem is that the real time 

monitored values do not cover the MV network.  

There are measurements in a partial set of MV substations, some of which are not being read out in 

real time. Network parameters such as line lengths and impedances are relatively static and can be 

collected from the business systems in the DSO. Switch statuses and the part of the data that is read 

from the network in real-time can be collected from the medium voltage SCADA system. An additional 

issue with such real-time metered data is that this type of metering at substation level is used in system 

management and operation and not in billing, so often this value is designed as only an indicative to 

the dispatcher in the control room, while the calibrated meters providing values to be used in billing 

systems are normally read out with automated meter readout (AMR) systems.  
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To complete the state vector in a distribution network, an estimation of correct loads in the network 

must be done so the MV network state estimation consists of two principal parts: 

 Estimation of topology and network parameters 

 Estimation of network loads 

The state estimation tool is designed with these two main building blocks in mind, explained in the 

following chapters.  

 

1.2. Topology Processing: Conversion of Node-breaker to Bus-branch model 

1.2.1. Physical Equipment Modelling and Node-breaker Model 

The need to explicitly model physical equipment and devices into the SCADA has resulted in them 

relying on a so-called node/breaker network model.  

Namely, the SCADA systems typically operate on a level of commands and signals – and a basic SCADA 

concept does not have a notion of any entity aggregating these commands, nor is the data semantics 

modelled directly. In other words: a signal measuring temperature of transformer windings and a signal 

measuring current or voltage do not differ substantially. Both are numeric signals, and the basic concept 

of a SCADA system does not aggregate them semantically. 

The principal benefit of a node-breaker model is that the signals directly correspond to the physical 

components of the industrial automation system being controlled.  

In this context, most electrical companies in the world were using their own internal ways of describing 

network elements so it was important to come up with standardized model, so-called CIM (Common 

Information Model), which everyone can use to easily exchange information. The most successful use 

case of IEC CIM is the ENTSO-E level Common Grid Exchange Model (CGMES), utilized among the TSOs 

to exchange grid models in a compatible way [3]. In late 2021, the European level model has been 

successfully and automatically assembled from partial CGMES-based network models of European 

countries. The IEC CIM is described in the IEC 61968 [4] and IEC 61970 [5] series of standards. It is 

designed as an object oriented standard and is in practice an ontological standard defining the classes 

that representing node/breaker model in detail.  

1.2.2. IEC CIM connector 

Admittedly, at first, discussing CIM might sound unrelated to the problem of state estimation. This is 

not the case: the IEC CIM has become a de facto standard for information exchange in all levels of 

business operations in a typical modern DSO. The lack of input data is the most significant challenge for 

the subtask of load estimation within medium voltage state estimation, being compliant with this 

standard significantly lowers the barrier to including external data.  

For example, modern SCADA systems are capable of building and exporting their internal network 

model in the format compatible with CIM. Similarly, tools often used in the DSO day-to-day operation 

often use CIM-compatible input data to interact with other systems. The reality of the business 

operations in a typical DSO is represented in the following figure.  
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FIGURE 2 – DIFFERENT BUSINESS CONTEXTS OF A TYPICAL DSO 

 

The business context is that in each business need of the DSO, e.g. automated meter readout, ERP or 

the SCADA system, a separate islanded software system has been started up to take care of that 

business needs. These systems often end up as partially integrated subsystems, and we run into the 

problem of the object not holding the same identifier in all the subsystems. Effectively, the same object 

has a part of its attributes defined in one system, and the rest of the attributes in other systems. For 

example, a simple electricity meter may have one ID in the ERP system, and a completely another one 

in the AMR system, with perhaps a third one in the asset management system. Effectively, there are 

multiple loosely coupled sources of truth for the same object. This is not surprising as the data required 

for expansion planning context is quite different from the SCADA operational context. 

Yet, the system and the DSO is the same, and this discrepancy often introduces friction into the DSO 

business context. To address this, KONČAR has developed an integration solution, compliant with the 

IEC CIM that allows respecting the semantic description of data according to the IEC CIM standard. 

Additionally, this solution allows bitemporal versioning supporting time of awareness and time of 

validity timestamps for each of the entities and allows multi-branch tracking like source code control 

systems. Multi-branching allows each of the subsystems to “look” at the same system and seeing 

different and sometimes differing subsets of the information.  

A derivative of the above solution is included in the deployment of ATTEST in the Croatian pilot and 

ATTEST tools benefit from the indirect compatibility with CIM and easier integration into the DSO 

systems. This is more relevant for the context of integration, so it is described in more detail in WP6 

deliverables.  

The important takeaway for the state estimation context is that the input network model will arrive in 

the node-breaker form, appropriate for tracking the status of network elements, but unfortunately not 

appropriate for the calculations and optimizations of the network as virtually none of the ATTEST tools 

uses this type of network model. 
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1.2.3. Topological Processing and Creation of the Bus-branch Network Model  

Virtually all optimizations and calculations in the transmission network require a correct network 

topology. The network topology can be determined from statuses of switches (breakers and 

disconnectors) and this creates an abstract model known as bus/branch network model.  

A switch is not an element which is a part of calculations such as power flows – a closed switch is 

effectively invisible to such calculations, and an open switch is a break in the network. A closed switch 

between the two physical nodes effectively aggregates these two nodes into the same abstract bus. An 

open switch means the two physical nodes must correspondingly be represented as two buses in the 

bus-branch model with no branch between them. 

The bus-branch model eliminates switches based on their open/closed status and groups the so-called 

connectivity nodes, connected with closed switches, into a single topological node (bus). The other 

elements of electrical network are modelled as topological branches and this process of conversion is 

called network topology processing.  

The collected statuses of switches may not be true to the current situation so it is important to keep 

the representation of each element from the node/breaker model so the dynamic changes can be 

applied back to the original node-breaker model.  In other words, the conversion should be possible 

from the node-breaker model to bus-branch model and vice versa.  

Additionally, if the original representation of the node-breaker model is kept track of, then it is not 

necessary to rebuild the bus-branch model from scratch on each switching operation. Only the parts of 

the model affected by a switching operation compared to the previous instance must be altered. 

The actual physical elements in the CIM network model used in topological processing are: Switch, 

BusBarSegment, ACLineSegment, EquivalentInjection and EnergyConsumer. The other models in CIM 

model are: ConnectivityNode and Terminal.  

The classes in CIM have multiple attributes, but for the first step in processing only the attribute for 

mRID of element is needed. The mRID is a unique identifier of an object in CIM, immutable over the 

lifetime of the object. Put differently: knowing the mRID is enough to uniquely identify and find the 

original element in the bus-breaker model. For this reason, the topological processor relies on the mRID 

as unique identifiers of the corresponding equipment. 

 Switch: has 2 associated terminals and subclasses Breaker and Disconnector  

 BusBarSegment: has 1 associated terminal. 

 ACLineSegment:  has 2 associated terminals and parameters for resistance (r), inductance (x), 

shunt susceptance (bch), shunt conductance (gch) and conductor length; all physical values that 

are inputs to the impedance calculation 

 EquivalentInjection: has 1 associated terminal.  

 EnergyConsumer: has 1 associated terminal.  

 ConnectivityNode: has one or more associated Terminals, it aggregates these Terminals  

 Terminal: has a reference for belonging ConnectivityNode (the ConnectivityNode it belongs to) 

and ConductingEquipment, plus ordinal number of terminal for belonging physical element – 

basically specifies the incidence with the above. 
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With the context provided above, the topological processing of the node-breaker model into the bus-

branch model is defined as follows: 

A switch is in closed state if its status is equal to 1, otherwise it is open.  

If there is a closed switch between two connectivity nodes cn1, cn2 and, e.g., cn1 < cn2 (where “<” is a 

comparison or ordering operator to determine the higher ranked element), then cn1 becomes cn2. This 

process is called merging of the nodes (into the lexicographically higher one, or whichever is preferred 

and implemented via a comparison operator).  

The comparison operator is used so the aggregation is predictable and the order is explicitly specified, 

e.g. so that it is clear the node A1 and node A2 get always get aggregated into the bus A1.  

The required input variables for topological processing: 

 node set: sorted mRIDs of all connectivity nodes, 

 asset map: mRID of the element is key to identify the actual instance of that element and 

 switch map: mRID of the switch is the key for the (externally retrieved) status of that switch. 

These are the additional mappings: 

 terminal map: the mRID of physical element is a key for the list of mRIDs of associated terminals. 

The initialization of this map is based on ConductingEquipment element referenced from the 

Terminal. From the asset map, all Terminal elements with the same mRID of reference for 

ConductingEquipment as key-mRID must be found. The mRIDs of these Terminal elements are 

put in a list. This lists the elements incidental to this Terminal. 

 connectivity map: the mRID of connectivity node is a key for the list of mRIDs of the associated 

terminals. The initialization of this map is based on the ConnectivityNode element, referenced 

from the Terminal. From the asset map all Terminal elements which have same mRID of 

reference for ConnectivityNode as key-mRID need to be found. mRIDs of these Terminal 

elements are put in a list.  

 merge map: the mRID of the connectivity node is a key for the mRID of connectivity node into 

which it is merged. The initialization of map is map[key]=key, i.e. at the start of topological 

processing the connectivity node only maps or merges into itself. 

 

An additional simplification step is done prior to the actual topological processing: the 

ACLineSegments are merged (aggregated) into an ACLine and therefore the nodes between the line 

segments are dropped from the topological processing. These can’t be aggregated as there is no 

switch and in the branch model the line segments combined together actually represent a branch. 

For every element in asset map (iterate through keys, assuming they are 

sorted): 

    If it is ACLineSegment: 

        Initialize ACLine, mRID is set to mRID of current ACLineSegment 

 

        From terminal map, the first associated terminal of current 

        ACLineSegment is the final first terminal of ACLine, and second 

        terminal is trial second terminal 
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        In first associated Terminal, change reference for 

        ConductingEquipment from current ACLineSegment to new ACLine 

        (ordinal number stays the same) number is set to 1 

 

        Attributes r,x,bch,gch and conductor length of ACLine are set to 

        the same attributes of ACLineSegment 

 

        From node set remove ConnectivityNode of second terminal (from 

        reference of Terminal element find associated ConnectivityNode) 

 

        For this element in asset map change its value to ACLine, and go to 

        next element While next element in asset map is ACLineSegment: 

 

            From terminal map, second associated terminal of current 

 

            ACLineSegment is trial second terminal of ACLine 

 

            Attributes r,x,bch,gch and conductor length of ACLineSegment 

            are summed up respectively with attributes of ACLine number is 

            increased by 1 

 

            From node set remove ConnectivityNode of both terminals (from 

            reference of Terminal element find associated ConnectivityNode) 

 

            From asset map delete key for this ACLineSegment and go to next 

            element in map 

 

            From terminal map delete key for this ACLineSegment 

 

        # Now we have the last line segment 

 

        From terminal map, second associated terminal of current 

        ACLineSegment is final second terminal of ACLine 

 

        Attributes r,x,bch,gch and conductor length of ACLineSegment are 

        summed up respectively with attributes of ACLine 

        number is increased by 1 

 

        From node set remove ConnectivityNode of first terminal (from 

        reference of Terminal element find associated ConnectivityNode) 

 

        From asset map delete key for this ACLineSegment 

 

        From terminal map delete key for this ACLineSegment 

 

        Using mRID of ACLine as key in asset map, replace value with 

        instance of this ACLine (from first segment of line to whole line) 

 

        Using mRID of ACLine as key in terminal map, replace value with new 

        list which consist of first and second terminal of this ACLine 

 

        For second associated Terminal of ACLine, change its reference from 

        ACLineSegment to ACLine (ordinal number stays the same) 

 

        # Whole line is now connected 
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With the above definitions and AC line simplification, the topological processing algorithm specification 

follows. The cursive text in brackets specifies the operations above. 

For every node in node set 

    Get the list of terminals from the connectivity map – the key is the 

mRID of current node 

    For every terminal in list 

        If it has a connected closed switch (from asset map get instance of 

        Terminal element and check if its reference for ConductingEquipment 

        is switch; if it is, use mRID of that switch as key in switch map 

        and check if its status is equal to 1) 

            Get the other terminal of that switch (from the terminal map 

             get the two terminals and choose the other one) 

 

        If there were closed switches, find max of saved mRIDs 

            For current and saved nodes, except one with max mRID, in merge 

            map rewrite value with max mRID 

 

            Transfer all terminals from nodes with smaller mRIDs to the 

            node with max mRID  

           (in connectivity map for saved nodes with smaller mRID move 

            values to value of max key-mRID) 

 

        # Because some nodes that represented maximum in one iteration 

        # could represent minimum in some of next iterations, it is 

        # necessary to iterate through node set in reversible way and make 

        # adjustments to merge map. The connectivity map is updated. 

 

        For every node in node set (in reversible way) 

            Merge node to associated maximum node 

            (merge map[mRID] = merge map[merge map [mRID]]) 

 

        # If for a node is valid: merge map[mRID] = mRID, it is called 

        # final node. TopologicalNode is a set of connectivity nodes which 

        # are merged into same ConnectivityNode. 

 

        For every key-node in merge map 

            Put it in the set of associated TopologicalNode  

              If a TopologicalNode doesn’t exist yet, make a new one  

 

The final output of the topological processor is a topological map, where the keys are the mRIDs of final 

nodes for the associated TopologicalNodes. 

Finally, the analogous algorithm is also utilized to calculate the incidence and the elements of nodal 

admittance matrix for the power system: for each node in the topological map, the set of connectivity 

nodes for these nodes is processed and the admittance is calculated. Essentially, this topological 

processing model aggregates the original nodes into buses of the modeled power system and calculates 

the impedances between the nodes. 

Set dimension N of matrix to zero 

For every key in merge map 

    If node is final node 

        mRID of node is key in final map for value N 

        N is increased by one 

 

# Now we know number of buses in the model 

 

Matrix with dimension N is set to zero 
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    For every node in merge map: 

        If node is final node: 

            Go trough connectivity list of that node: 

                If reference for ConductingEquipment of Terminal is ACLine: 

                    From terminal map get the other Terminal of ACLine 

                    (where key is mRID of ACLine) 

 

                    From other Terminal take reference for ConnectivityNode 

 

                    For found ConnectivityNode, from merge map find 

                    TopologicalNode to which it belongs (key is mRID of 

                    found ConnectivityNode) 

 

                    Calculate admittance (Using attributes r, x from 

                    ACLine: admittance = r/(r^2+x^2) - j*[x/(r^2+x^2)]) 

 

                    On place (final map[mRID of first node], final 

                    map[mRID of second node]) in matrix set value to: 

                    admittance*(-1) 

 

                    On place (final map[mRID of first node], 

                    final map[mRID of first node]) in matrix add up value 

                    of admittance 

 

                On place (final map[mRID of first node], 

                final map[mRID of first node]) in matrix add up shunt value 

                (Using attributes gch, bch from ACLine: 

                shunt = gch/2 + j * (bch/2)) 
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1.3. Important assumptions on topology processing context 

Normally, the topological processing is seen as an integral part of the state estimation context. Given 

the context of ATTEST, and as the relevant input data coming into ATTEST tools is essentially in node-

breaker format (be it from GIS or from SCADA system), we have decided to split the topological 

processor into two halves and deliver the initial topological processing as a service for all the other 

tools. 

This way all the ATTEST tools effectively benefit from the topological processing and the conversion of 

input data based on the node-breaker model into the bus-branch model, and the ATTEST toolbox can 

be integrated with the rest of the software systems in the TSO or DSO. 

 

FIGURE 3 – DATA EXCHANGE COMPONENT BETWEEN THE ATTEST TOOLBOX AND OTHER SYSTEMS 

 

The ATTEST toolbox consists of several tools, each with their own requirements, inputs, and outputs. 

While it is the task of the ATTEST WP6 to provide the integration details, a brief overview of the context 

is provided here. 

 

FIGURE 4 – TOOL WRAPPER AS AN ENVIRONMENT FOR THE TOOL TO RUN 

 

In the integration context, each of the tools is wrapped into a wrapper that supplies the inputs and 

takes care of the outputs delivered by the tool. In essence, each of the tools runs in an environment 

closely resembling the one where it has been developed. This includes the formats of input and output 

data, and consequently, also the network models. 
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FIGURE 5 – DATA EXCHANGE COMPONENTS BREAKDOWN 

 

From the Figure 3, a wider context of the data exchange component is visible. It is tasked with 

interfacing with other systems in the TSO and DSO and providing the tool wrappers with appropriate 

inputs and outputs. The Figure 5 specifies the subcomponents of the data exchange component, one 

of which must be the topology processor specified in Chapter 1.2.3. 

This means that the topological processing is a service offered to virtually all the other tools. Here, a 

pragmatic assumption is made that the obtained switch statuses are assumed to be generally correct, 

so the resultant topology from the processing is immediately utilized as part of the input for all the 

other ATTEST tools through the data exchange component and by placing the derived inputs into the 

tool wrappers. No difference is made between the estimated switch statuses and the ones directly 

inferred from the SCADA system. A caveat here is related to the parts of today’s MV networks, where 

some MV/LV substations might not be covered by any type of measurements at all. By 2030, however, 

we expect at least inferred switch statuses to be available. State estimation could support external 

higher frequency measured values, that gather their measurements from the downstream meters at 

the low voltage side. These measurements could generate additional switch statuses inferred from the 

measurements and thus benefit the substations where no measurement equipment is installed.  

 An interesting future step of the development would be integrating the estimator in a tighter fashion 

with the SCADA software, as a part of the DMS functionalities. This way, the topology validity check 

could be performed iteratively and automatically.  The overall architecture of the estimator supports 

this approach fully.  

 

1.4. Topology processor implementation 

Topology processor is implemented as a library that provides functions and classes that allow users to 

connect indirectly to a CIM record database, implemented in the KONČAR PowerCIM solution. 

The PowerCIM solution is KONČAR’s product that allows bitemporal versioning of CIM network models, 

and for purposes of ATTEST project is also utilized as integrator towards CIM-aware systems in the TSO 

or DSO. 

The topology processor library queries the PowerCIM and collects the CIM elements generating the 

bus-branch model and calculating admittance matrix based on connectivity nodes of the system.  

This implementation follows the pseudocodes proposed in 1.2.3, with a minor difference in the way the 

merge map handling vs. the connectivity map. For the admittance matrix the connectivity map is used 

primarily to improve the performance as its structure is more condensed. Functionally, there are no 

difference regarding the final calculated admittance values. 

Data exchange
component

Adapters to TSO/DSO systems

PowerCIM (CIM repository)

Topology processor

Storage component
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Topological processor is implemented as a Python package. It assumes there is a live PostgreSQL 

database which holds instance of PowerCIM and there are appropriate access rights. It also assumes 

that the database contains an internal PowerCIM function: 

recordat(lastbranchid integer, 

         lastcommitid integer, 

         lastvalidtime timestamp without time zone, 

         cimclassids int4[], 

         hmrids uuid[], 

         mrids uuid[], 

         pmrids uuid[], 

         rnamelikes text[]) 

returns table(mrid uuid, 

              mridtext text, 

              rname text, 

              cimclassid integer, 

              cimclass text, 

              pmrid uuid, 

              fullobject jsonb) 

 

As implemented, the topology package contains several modules that match the steps in topology 

processing. These modules are: 

 db – Python module handling database communication, provides a connection object with the 

methods for connecting and executing common queries 

 unprocessed - initializes data structures and different maps needed for the processing algorithm 

 node_breaker - implementation of the first topology processor algorithm segment, which 

detects connectivity nodes by analyzing the switch positions 

 node_branch - implementation of the second topology processor algorithm segment, detects 

line admittances and generates an admittance matrix between the connectivity nodes 

Additionally, for the purpose of integrating with other subcomponents of the data exchange 

component, illustrated in Figure 5, there is a server API provided that offers topological processor 

functions as a web service. 

The /api endpoint supports GET requests with the branch_id and commit_id parameters that are 

passed to the PowerCIM to select the correct CIM network model. 

The result is a JSON representation of the admittance matrix, whose structure respects the following 

JSON schema: 

--- 

type: object 

required: 

    - branch_id 

    - commit_id 

    - datetime 

    - admittance_sparse_matrix 

    - topological_nodes 

properties: 

    branch_id: 

        type: int 

        description: CIM repo branch id 

    commit_id: 

        type: int 
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        description: CIM repo commit id 

    datetime: 

        type: int 

        description: UNIX timestamp of the time when the snapshot was taken 

    admittance_sparse_matrix: 

        type: array 

        items: 

            type: object 

            description: | 

                Sparse matrix, represents connection between the 

                topological 

                node at row and col, with the admittance value. Rows and 

                cols are indices of topological nodes under the     

opologlical_nodes 

                property. 

            required: 

                - row 

                - col 

                - value 

            properties: 

                row: 

                    type: int 

                col: 

                    type: int 

                value: 

                    type: array 

                    maxContains: 2 

                    description: | 

                        complex number, first value is the real and second 

is 

                        the imaginary segment 

                    items: 

                    type: float 

    topological_nodes: 

        type: array 

        items: 

            type: array 

            maxContains: 2 

            description: | 

                pair of topological node UUID (first UUID in the group by 

                lexicographic order) and all element UUIDs belonging to 

that 

                node 

            prefixItems: 

              - type: string 

                description: UUID, topological node id 

              - type: array 

                description: | 

                    ids of all elements belonging to the topological node 

                items: 

                    type: string 

                    description: UUID 

... 
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Example request: 

GET /api/branch_id=4&commit_id=1 

Response: 

{ 

    "branch_id": 4, 

    "commit_id": 1, 

    "timestamp": 1664181352, 

    "admittance_sparse_matrix": [ 

        {"row": 0, "col": 0, "value": [1.1, 2.2]}, 

        {"row": 0, "col": 1, "value": [-1.1, -2.2]}, 

        {"row": 1, "col": 0, "value": [-1.1, -2.2]}, 

        {"row": 1, "col": 1, "value": [1.1, 2.2]}, 

        {"row": 3, "col": 3, "value": [5.3, 7.1]}, 

        {"row": 3, "col": 4, "value": [-5.3, -7.1]}, 

        {"row": 4, "col": 3, "value": [-5.3, -7.1]}, 

        {"row": 4, "col": 4, "value": [5.3, 7.1]}, 

    ], 

    "topological_nodes": [ 

        ["c134850a-3d76-11ed-b16f-201e88d11df2", [ 

            "c134850a-3d76-11ed-b16f-201e88d11df2", 

            "d05c1944-3d76-11ed-b16f-201e88d11df2"]], 

        ["f4d6681a-3d76-11ed-b16f-201e88d11df2", [ 

            "f4d6681a-3d76-11ed-b16f-201e88d11df2"]], 

        ["0bf53f62-3d77-11ed-b16f-201e88d11df2", [ 

            "0bf53f62-3d77-11ed-b16f-201e88d11df2"]], 

        ["16094d7c-3d77-11ed-b16f-201e88d11df2", [ 

            "16094d7c-3d77-11ed-b16f-201e88d11df2"]], 

        ["234b67ea-3d77-11ed-b16f-201e88d11df2", [ 

            "234b67ea-3d77-11ed-b16f-201e88d11df2"]] 

    ] 

} 

This could be interpreted as the following admittance matrix: 

1.1 + 2.2j  -1.1 - 2.2j 0          0           0 

-1.1 - 2.2j 1.1 + 2.2j  0          0           0 

0           0           0          0           0 

0           0           0          5.3 + 7.1j  -5.3 - 7.1j 

0           0           0          -5.3 - 7.1j 5.3 + 7.1j 

Furthermore, adding the topological nodes interpretation we can see that the node c134850a-3d76-

11ed-b16f-201e88d11df2 and f4d6681a-3d76-11ed-b16f-201e88d11df2 are connected, with 

admittance of 1.1 + 2.2j, and 16094d7c-3d77-11ed-b16f-201e88d11df2 is connected with 234b67ea-

3d77-11ed-b16f-201e88d11df2 with admittance of 5.3 + 2.2j. Lastly, the values on the diagonal the 

represent shunt values of the individual nodes. 
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1.5. Load calibration implementation 

The task of load calibration is to take the best possible effort to estimate the loads at the nodes where 

live measurements do not exist at all. Virtually the only measurements that can be had at these network 

nodes are the cumulative measurements of all customers downstream, obtained from the billing 

systems. These are typically not available at all in real time and normally these measurements don’t 

carry the topological information. These values are typically only available as historical data, and even 

then the granularity of the data may not be the desired one as not all users have smart meters. 

While it is considerably realistic to assume that by 2030, the year the ATTEST developments target, 

most of the end users will be covered with smart meters capable of producing 15-minute readouts, to 

handle the transition period the load calibrator relies on the typical load curves, where 15 minutes 

values are not available. 

This approach uses the typical load curve inferred from the data, and, essentially, scales the values to 

predict the value in the network nodes. Implicitly, the load calibrator classifies each of the network 

nodes, and then estimates the load value based on the predictor input parameters, such as the season 

or the time of day. The predictor input values can vary significantly. An example, not utilized here, can 

be the local temperature or the level of deployment of electrical vehicles. It is reasonable to expect the 

increase of external data that impacts the operation of the distribution network. 

For training, the dataset provided by HEP DSO, a set of 15-minute values for load curves for four 

seasons, split into business day and weekend (holiday) days are available, for the Koprivnica network. 

The current version of the load calibrator is a relatively simple but robust estimator that uses the hybrid 

of a simple lasso regression and a neural network-based estimator. In the training phase the estimation 

error, compared to the measured values, is in worst cases around 17% of the peak load for a given 

node. This is, however, the value that only uses the absolute value of load at the load points, with no 

consideration on, e.g. the number of households at that connection point. A more fine-grained data 

preparation method would result in a finer training dataset and better estimation performance. 

The input dataset for this network is illustrated depicted in the figure below. The load calibration then 

deduces the current season and the day type from the time when it is invoked, and passes these 

inferred parameters to the previously trained estimator.  

As with any forecasting and estimation task, the load calibration predictor is not generalized. It is highly 

specific to the network and to the input dataset. Significant changes to the observed network would 

require retraining and a new input data set.  
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FIGURE 6 – EXPLORATORY ANALYSIS OF THE DATASET FOR KOPRIVNICA HEP ODS NETWORK 

 

The final step of the state estimation procedure takes the estimated values of the loads and performs 

the load flow, so the set of values is coherent. The power flow result compared with the measured 

values, especially the ones at feeder level, provides a degree of quality evaluation for the estimated 

state, i.e. a degree of coherence with the measured values. The criterion used is the maximum deviation 

from the actual measured values, max |𝑉𝑒𝑠𝑡 − 𝑉𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑|.   
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1.6. Other implementation details and future work 

The state estimation tool is, essentially, a network model source for all tools that require the complete 

model of the medium voltage network. As discussed earlier, this wider context resulted into a split into 

two components, the topological processor and the load calibration or the pseudo measurement 

estimation module. The core state estimation code is implemented in Python in a modular fashion, 

relying on KONČAR open-source event-driven platform, as illustrated in Figure 7 below. 

 

FIGURE 7 - OVERVIEW OF ALL IMPLEMENTED STATE ESTIMATOR MODULES 

 

Besides interfacing through the CIM connector, using the event-driven platform that natively supports 

SCADA protocols allows the usage of these protocols to couple the estimator more tightly with the MV 

SCADA system to gather the live input data. Besides being able to interface with live data inputs, this 

also allows eventual integration of the estimation results, using the same SCADA protocols. This could 

allow the external SCADA GUI to visualize the state estimation results within the usual user interface. 

An example of possible visualization of state estimator results is depicted below.  
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FIGURE 8 – AN EXAMPLE OF STATE ESTIMATOR RESULTS VISUALIZATION 

 

The above visualization has been implemented in the state estimation tool development and uses the 

widgets from the KONČAR PROZA Station SCADA platform to visualize the simulated measured values 

together with the estimated ones.  

Integrating with the principal SCADA system in the DSO might allow an additional manner of launching 

the ATTEST tools, as well – these could be used as part of the distribution network management system. 

This functionality exists but has only been tested and used during the development at the time of 

writing this document. This is the reason for the dashed line towards the external SCADA system in 

Figure 7. 

With regards to the calculation modules, the topology processor serves as a gatekeeper towards the 

ATTEST data exchange component, as described in previous chapters, and towards the comparatively 

smaller power flow calculator module and pseudo measurement generator module.  

All modules of the state estimator are implemented in Python programming language, utilizing several 

libraries of which the most important are Pandapower used to calculate the power flows in the final 

state estimation calculation step in the power flow calculator module. The key benefit of the modular 

organization illustrated above is that the future development in any of the modules generally does not 

affect the other modules. For instance, replacing or upgrading the pseudo measurement generator 

module shouldn’t affect the topology processor module. Similarly, modifying another power flow 

calculator does not affect the other modules.  
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1.7. How to run the tools 

As discussed in this document, the tool has been split into two parts: topology processor and pseudo 

measurement generator. 

The topology processor is designed to be run as part of the data exchange component, so it is not 

intended to be run separately. However, it is possible to run it via a tool that allows running the GET 

requests such as Insomnia, Postman or a simple curl command. 

 

FIGURE 9 - TOPOLOGICAL PROCESSOR OUTPUT 

 

The IP address in the request should point to the server where the topology processor is installed. The 

parameters in the request are explained in the chapter 1.4 above and represent the selected CIM 

network commit in the linked PowerCIM database. The user interface will allow user to select the 

network while the identifiers will be passed in the backend. Similarly, the interpretation of the API 

output is supposed to be handled by the subcomponent of data exchange component that creates the 

MATPOWER file from it as most of the ATTEST tools require this format. 

The pseudo load estimator is also not designed to be run as a separate module, however it can be run 

from the command-line as well. It is a python module and has two principal modes of work: training 

and running the estimator. In both modes the first parameter is the MATPOWER format of the network. 

For training mode, a second parameter points to a CSV file with additional historical data for training, 

by default historical load curves for the nodes that do not have direct measurements in SCADA. The 

training mode runs the estimator. The training mode output is a pickle file where the configuration of 

the estimator is saved.  

In the estimation mode, the second parameter is that pickle file holding the pseudo load estimator 

internal configuration, and the third parameter is the desired estimation timestamp, from which the 

day of the week and the hour are inferred, and the estimation run. The results are returned in 

Pandapower compatible JSON format. When it is run within the SCADA platform including the SCADA 

platform HTML5 based user interface, then the screenshot of the main outputs of the state estimator 

is depicted in the Figure 8. 
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