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Abstract—Current state-of-the-art solution techniques for solv-
ing bilevel optimization problems either assume strong problem
regularity criteria or are computationally intractable. In this
paper we address power system problems of bilevel structure,
commonly arising after the deregulation of the power industry.
Such problems are predominantly solved by converting the lower-
level problem into a set of equivalent constraints using the
Karush-Kuhn-Tucker optimality conditions at an expense of
binary variables. Furthermore, in case the lower-level problem
is nonconvex, the strong duality does not hold rendering the
single-level reduction techniques inapplicable. To overcome this,
we propose an effective numerical scheme based on bypassing
the lower level completely using an approximation function that
replicates the relevant lower level effect on the upper level.
The approximation function is constructed by training a deep
convolutional neural network. The numerical procedure is run
iteratively to enhance the accuracy.

As a case study, the proposed method is applied to a price-
maker energy storage optimal bidding problem that considers
an AC power flow-based market clearing in the lower level.
The results indicate that greater actual profits are achieved as
compared to the less accurate DC market representation.

Index Terms—Bilevel optimization, deep convolutional neural
network, optimal power flow.

I. INTRODUCTION
A. Background and paper scope

Deregulation and liberalization of the power sector world-
wide dislodged large monopolistic power utilities, allowing
for private companies to become important players in the
sector. However, each of the newly created entities have their
own goal, e.g. generating companies want to maximize their
profit, system operators maximize the security of supply, while
market operators maximize social welfare. Because of the
increased number of players with conflicting objectives, they
need to consider each other’s goals and objective functions
when optimizing their own utility. To accommodate the inter-
action between own and other player’s actions, the researchers
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commonly resort to bilevel models, where own optimization
problem (the upper-level (UL) problem) is constrained by
another optimization problem (the lower-level (LL) problem).
This setting assumes that the lower-level behavior is known,
which is the case when considering the market operator con-
ducting its market-clearing procedure or any other regulated
entity that behaves according to some widely-known rules.

As of October 5, 2021, the IEEE Xplore database [
indicates that three flagship IEEE Power and Energy Society
journals published 182 journals with word bilevel in the title
(115 such papers in IEEE Transactions on Power Systems, 45
in IEEE Transactions on Smart Grid and 22 in IEEE Trans-
actions on Sustainable Energy). These papers cover a wide
range of bilevel problems. Some of the most common topics
include protection of a power system against a terrorist attack,
e.g. [2[], pricing schemes, e.g. [3]], maintenance scheduling, e.g.
[4]], expansion planning, e.g. S]], or optimal bidding in one or
more energy (6] or financial markets [7].

Although bilevel models have been used extensively in
the literature, they often suffer from two drawbacks. The
first one is related to linearization, as commonly one or
more variables from the lower-level problem appear multiply
an upper-level variable in the upper-level objective function.
Although in many cases this can be linearized using the
strong duality theorem and some of the Karush-Kuhn-Tucker
(KKT) optimality conditions [8]], see e.g. [9]], in some cases
this is not possible. In such cases the authors commonly
resort to the binary expansion method (see appendix B in
[6]). However, besides being an approximation, this method
can result in intolerable computational times, bringing us to
the second drawback, i.e. computational (in)tractability. Issues
with tractability often arise when the lower-level problem is
stochastic or has many inequality constraints, resulting in a
large number of binary variables. Some authors thus resort
to an iterative procedure that considers the complicating dual
variables in the problematic bilinear terms as parameters, and
updating their values in the following iteration [10].

The aim of this paper is to present a numerical scheme
based on deep convolutional neural networks paired with
state-of-the-art training procedure for solving complex bilevel
problems arising in the power systems community. As a
representative of such problems, we solve a bilevel problem
of optimal participation of an energy storage in the day-ahead
energy market. We assume an AC-optimal power flow (OPF)-
based market clearing algorithm in the lower-level. AC OPF is
a challenging problem with numerous simplification attempts,
e.g. by convexification [11]. However, to this date there is
still no known exact finite convex AC OPF formulation that



classical approaches could solve to optimality.

Optimal bidding problems consist of two interlinked op-
timizations. The first problem, also called the leader or the
upper-level problem, represents the market participant that
maximizes the agent’s profit due to arbitrage, while the second
problem, also called the follower or the lower-level problem,
is the market clearing that maximizes the social welfare and
determines the electricity prices that depend on the bids from
the upper-level problem. The described bilevel optimization
can not be directly solved using commercial off-the-shelf
solvers, thus they are usually converted into a single-level
equivalent optimization problem. However, such conversion
is difficult since the exact AC OPF models, that appear in
the lower level, are nonconvex and thus render many existing
techniques inapplicable. The authors of this paper have already
explored the single-level reduction approach in a two-part
paper [12] and [13]], where AC OPF is modeled using a convex
quadratically constrained quadratic approximation [11f, but
even the most computationally efficient solution techniques
start diverging for large systems, i.e. systems with over 70
buses. Here we explore a neural network (NN) metamodeling
approach that is known to require significant computational
time and resources, but can compute for large systems and
even allows for discrete variables in the lower level (at even
greater computational cost). On the other hand, the KKT-based
single-level reduction techniques solve the upper and the lower
level simultaneously so the solution process can diverge for
large systems.

Proving the global optimality of solution is not within the
scope of this paper. Generally, numerical optimization methods
that can find global optimal solutions require much stronger
conditions on the optimizing goal function and domain of
optimization, for instance, in the case of optimizing a linear
function on a convex domain. Our method is general in a sense
that it imposes no mathematical conditions on the class of the
lower level problem except that, using reasonable time and
resources, the lower level can be evaluated a number of times
to create a dataset for the NN training.

B. Literature review

As depicted in Fig. the existing literature on bilevel
solution techniques branches out in two main directions:
classical and evolutionary approaches. Due to computational
difficulty of bilevel problems, the classical approaches can
only tackle well-behaved problems with strong assumptions,
such as linearity or convex quadraticity and continuity of
the lower-level problem, as strong duality generally does not
hold for other types of problems. By far the most common
classical approach is a single-level reduction based on the KKT
conditions and the duality theory. It has been widely used
to solve bilevel problems with linear constraints and either
linear [[14]] or convex quadratic [15]] objective functions, as
well as problems with convex quadratic constraints when the
interaction between the two levels is discrete [|16]. The result-
ing formulations contain complementarity constraints which
are combinatorial in their nature and thus can be modeled
using binary variables making the final problems mixed-
integer linear (MILP) or mixed-integer quadratic (MIQP). The

existing state-of-the-art solvers generally handle well these
types of optimizations using the branch-and-bound method
for binary search tree and simplex for search-tree node sub-
problems, despite the exponential complexity in the worst
case. The single-level reduction technique has also been
successfully applied to a case where the lower level is a
convex quadratically-constrained quadratic problem (QCQP),
as in [17]. Other classical approaches are the descent method,
the penalty function method, the trust-region method and
the parametric programming method. The descent method
determines the most favorable variable change for the objective
function, as demonstrated in [[18]], so the model stays feasible.
However, since the model is feasible only when the lower
level is optimal, finding the descent direction is very difficult.
The penalty function method replaces the lower-level [19] or
both-level [20] constraints with penalty terms for constraint
violations in the objective function. The trust region algorithms
iteratively approximate the lower level around the operating
point with linear problem (LP) or quadratic problem (QP)
[21]. Both the penalty and the trust-region methods as the
next step apply a KKT-based single-level reduction to the
lower level and thus inherit the same applicability limits. A
recent research thrust in parametric programming has resulted
in an alternative approach to solving bilevel programs to global
optimality by exploiting the notion of critical regions. To this
point, solution approaches based on parametric programming
have been proposed to handle bilevel programs with LP [22],
QP [23]], MILP and MIQP [24]] lower levels.

As opposed to the classical ones, the evolutionary ap-
proaches are inspired by the biological evolution principle
where candidate solutions are evaluated using a fitness func-
tion, e.g. objective function, to form the next generation of
candidate solutions by reproducing, mutating, recombining
and selecting processes. Evolutionary approaches are very
effective at finding good approximate solutions of numerically
very difficult problems with fewer regularity assumptions than
the classical approaches. For bilevel problems, the evolution
is commonly applied in a nested form where the lower level
needs to be solved separately for every upper-level solution
candidate, as explained and analyzed in [25]. The upper-
level solution candidates are obtained using an evolution,
e.g. particle swarm optimization [26] or differential evolution
[27], while the lower level can be solved using classical
approaches such as interior point method [28]] or as well using
an evolution, as in [27]. Despite applicability to nonconvex
problems, where classical approaches do not hold, the nested
evolutionary method does not scale well with the number
of upper-level variables as they exponentially increase the
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Fig. 1. Classification of the bilevel problem solution techniques.



number of lower-level optimizations that need to be performed.
A single-level reduction technique can also be utilized in the
context of evolutionary approaches where numerical evolution
concept is applied to the reduced formulation. Due to KKT
conditions, this technique inherits regularity assumptions of
the classical approaches for the lower-level problem, but
allows a more irregular upper level. Paper [29]] is one of the
first works where this technique was employed. Evolutionary
approaches can also be applied in tandem with the meta-
modeling method. Meta-model, or surrogate model, is an easy
to evaluate, typically iteratively enhanceable, approximation of
the original model. For bilevel modeling, the lower level can be
meta-modeled using the reaction set mapping, optimal lower-
level value function, by bypassing the lower-level problem
completely and by using an auxiliary bilevel meta-model.
The reaction set method maps the lower-level variable values
as a response to the upper-level variables, as demonstrated
in [30]. On the other hand, the optimal lower-level function
method replaces the lower objective statement of minimization
or maximization with a constraint requiring that the objective
is at least as good as the optimal lower-level function [31]].
Both the reaction set map and the optimal lower-level function
are generally difficult to obtain even in an approximated
form. Bypassing the lower-level completely is based on the
principle that the lower-level variables are basically functions
of the upper-level variables, which allows for the upper level
reformulation not to include the lower level. Similar to the
trust-region method, bilevel problems can be replaced with
auxiliary meta-models. As of current, we are not aware of
any works based on bypassing the lower-level problem or
the auxiliary meta-models methods. A broader bilevel solution
techniques research field review, for both the classical and the
evolutionary approaches, can be found in [32].

The approach presented in this paper can be classified as an
evolutionary meta-modeling method that bypasses the lower-
level problem completely, as given by [32]]. This bypassing
of the lower-level problem is achieved by approximating the
solution of the lower-level, which depends only on the upper-
level variables, using a carefully designed NN, see [33|] and
[34]. As a NN is simply a function composed of elementary
functions, it can be substituted directly into the upper-level
objective function. This way, the original bilevel optimization
problem is reduced into a single-level optimization problem,
which approximates the solution of the original problem. The
main difficulty of our framework is the design and training of
a NN that efficiently and accurately approximates the lower-
level problem.

C. Contribution

In this work we develop a general numerical solution
technique for bilevel problems and apply it to the energy
storage (ES) bidding problem on an AC-OPF-constrained
energy market. The technique is applicable to any other upper-
level subject, but we chose the ES due to modeling simplicity
and clarity of presentation. The numerical and mathematical
difficulty of solving the considered bilevel optimization arises
from insufficient problem regularity due to nonconvexity of
the exact AC OPF formulations. Current modeling practice is

to avoid the difficulties by using a simpler linear DC OPF [35]]
network representation as in [36]. To the authors knowledge,
there are very few attempts to solve bilevel problems with an
AC OPF in the lower level. We have not found any with the
exact AC OPF, thus we single out two papers with AC OPF
relaxations, [37] and [38]. Scalability and tractability issues
are not discussed in these papers which is also one of the
important points of this work.

The contribution of this paper consists of the following:

1) We introduce a novel numerical scheme for solving
bilevel optimization problems based on deep convo-
lutional neural networks. It is an evolutionary meta-
modeling method that completely bypasses the lower-
level problem. Our method successfully works with pre-
viously intractable, i.e. nonconvex, classes of the lower-
level problems. As opposed to the existing techniques,
solution times are basically independent on the upper-
level problem size and scale well with the lower-level
problem size.

2) We demonstrate the solution technique -effectiveness
by solving a price-maker energy storage AC-OPF-
constrained market bidding problem. The results demon-
strate higher achieved profits than with the DC market
representation.

The paper is organized as follows. Section provides
mathematical foundation of the work and is divided in six
subsections. Subsection states the optimization problem,
Subsection [[I-B] explains how to approximate the lower level
using a neural network, Subsection describes the concept
of fully connected neural networks, Subsection [[I-D| explains
the advantages, concept and our choice of hyperparameters
of the used convolutional neural network, Subsection [[I-E
describes the neural network training algorithm and Subsection
II-H explains our iterative numerical scheme to solve the
optimization problem at hand. The case study is presented in
Section with implementation details stated in Subsection
and results in Subsection The final Section
concludes the paper.

II. MATHEMATICAL MODELING
A. Optimization model

In the following model we solve optimal ES bidding prob-
lem in the AC OPF network-constrained electricity market.
The problem is of bilevel structure, i.e. the upper level
maximizes the ES profit while the lower level maximizes
social welfare due to supply and demand market bids. In the
lower level we consider an exact nonconvex quadratic AC OPF
formulation based on rectangular coordinates [39]] notation
written out in the Appendix, however, other notations such
as polar [39]] or current-voltage [40] are also applicable.

The upper-level problem consists of objective function (1.1J),
where ); is the electricity price in each hour indexed by ¢,
and pP*S is the average ES power during one hour, i.e. energy,
at the interface. Constraint (I.2) models the ES (dis)charging
process, i.e. change in its state-of-energy SoF; considering
charging and discharging efficiencies n°® and n9is. Constraint
sets limits to the state-of-energy (SoE), with SoE being
the maximum value. Constraints (T.4) and (I.3) limit the ES



(dis)charged energy to g°® for charging and g® for discharg-
ing. Binary variable x$" disables simultaneous charging and
discharging. Finally, equation combines charging and
discharging into a single variable p;ES. Optimization variables
are written in formulas in normal font and contained in the
variables set =, while the parameters are written in bold font.

Max —ZpES-At (1.1)

SoE, = SoE;_, +p* ntch pds /s ove (1.2)
0 < SoE, < SoE, Vt (1.3)
0<pP<g® ozt Wt (1.4)

0<plis<qdis. (1—afh), Wt (1.5)
S =it =i, vt (1.6)

The lower level is only textually explained and not written
here since we are bypassing it completely. The rectangular AC
OPF consists of the objective function, the bus power balance
constraints, the power flow equations, the line apparent power
limits, the bus voltage limits, the generator production limits
and the reference bus constraints. Mathematically challenging
are the power flow equations and the lower bus voltage limit
constraints, which do not conform to the traditional single-
level reduction technique as they are nonconvex. Moreover,
there are two additional convex, but nonlinear parts of the
formulation. The considered objective function has quadratic
cost coefficients and line apparent power limit constraints are
of second-order cone form. Broader insights of different AC
OPF formulations can be found in tutorial works such as [39]].

Bypassing the lower level is based on the fact that the
locational marginal prices A; are essentially a function of the

upper-level pES variables, i.e. the objective can be expressed

as I (pt'S, p5S S), where |7| is cardinality of the time

yP2 7p7—1)
steps set 7. However, F' can not be expressed explicitly, so
we replace the objective function /' with the approximation
F' from . The approximating function Fis given as the
feed- forward neural network, so it can be expressed explicitly
in terms of elementary mathematical functions. Essentially,
we are solving a single-level optimization meta-model that

maximizes (I.7) subject to constraints (T.2)—(T.6).

M:ax F(p1 ,p2 ""’pITI) (1.7)

The problem belongs to the mixed-integer nonlinear opti-
mization class due to the nonlinear neural network function F’
and due to 7! being binary variables.

B. Lower level approximation using neural networks

For any function f : U € R™ — R™ there exists a NN that
uniformly approximates the given function, see [41]] and [42].
Typically, it is unknown how exactly to construct a specific
NN, approximating the function f to the desired accuracy
and using the smallest possible number of neurons. The first
problem we encountered is the limited size of dataset used
to train such NN. More precisely, each element in the dataset
must be constructed by solving a single instance of the lower-
level optimization problem for chosen values of the upper-
level variables. Solving too many instances of the lower-level
problem would take too long. On the other hand, the size of

the dataset limits the maximum network size (the number of
neurons), by limiting the number of parameters that define
that particular network. NNs trained on a dataset that is small
compared to the number of network parameters tend to overfit
the training data and are poor in generalization on unseen data.
In our case that would lead to lower accuracy of approximation
of the lower-level problem solutions. Basically, the size of the

dataset limits the accuracy of the NN approximation.
The second issue is in determining an optimal topology

of a NN for a given network size, in order to achieve
the greatest possible approximation accuracy. The optimal
topology is dependent on an unknown function, which we
are trying to approximate. Our first approach, using fully
connected neural network with only few hidden layers, led
to poor approximation accuracy. By carefully analyzing the
properties of the lower-level optimization problem, the choice
of a network topology was settled on a convolutional neural
network (CNN) [43]]. As the CNN architecture shares the same
values of parameters between different parts of the network,
the cumulative number of parameters is much smaller for the
network of the same size, so the CNN architecture can be
trained to approximate the original optimization problem to a
higher accuracy. The first big success of the CNN architecture
was in the area of computer vision, in the image classification
problems [44].

The third obstacle we encountered was the generation of a
dataset for the CNN training. Our first idea was to generate the
dataset by uniform random sampling of the independent upper-
level variables, only in intervals of their permissible values.
Then for each sample, we solved the associated lower-level
optimization problem. This strategy proved to be inefficient
as the near-optimal values of the upper-level variables, which
solve our bilevel optimization problem, are poorly represented
by sampling these variables independently from the uniform
distribution. It resulted in much higher approximation error
of the CNN on the optimal solution than on the generated
dataset. The solution proved to be in iterative refining of the
generated dataset. In the first iteration we generate a uniform
dataset on the whole permissible domain and find the solution
of the approximation for the bilevel optimization problem. In
each additional iteration we restrict the domain to an even
smaller neighborhood around the approximated solution from
the previous iteration. Then we generate a new uniform dataset
on this smaller domain, train a new instance of the CNN, and
using this new trained network, we again find a solution of
the approximating problem. In each iteration we verify the
quality of the current solution by computing the upper-level
objective function exactly on optimal variables approximate
problem values. We stop iterating when the actual value of
the upper-level objective function stops improving.

C. Feed-forward fully connected neural networks

A feed-forward fully connected NN (see Figure [2) consists
of K layers, where each layer consists of a number of neurons
[45]]. The first layer is referred to as the input layer, the last
layer as the output layer, while the intermediate layers are
called hidden layers. Neurons in each layer are connected
only to the neurons in the neighboring layers. Feed-forward



means that the data flows from the input layer to the output
layer, strictly from one layer to the next one and in only one
direction. Fully connected means that each neuron is connected
to every neuron in the neighboring layers. Finally, each neuron
in every hidden layer performs a nonlinear transformation on
the data by applying the so-called activation function. More
precisely, a feed-forward fully connected NN is a function
F :RM — RN® where N; is the number of neurons in the
input layer, and Ng is the number of neurons in the output
layer. Function F is a composition of the alternating affine
maps Ay : RVe-1 — RNk = 2 ... K and the element-
wise nonlinear activation functions A : RM — RNk,
k=2,...,K—1, such that

F=AgoNg_10Ag_10---0N30oAz0oNyo0 Ay,

where N} is the number of neurons in k-th layer.
Affine map Ay, can be written in a matrix form as

Zp = Ak(zk—l) =Wyzp_1+bg, Vk= 1,.. .,K,

where weight matrix W, has dimension Ny, x Ni_; and bias
vector by has dimension Ny.

For the activation functions we element-wise use the Soft-
plus function,

In(l +exp(B-2)) Vk=1,... K,
B " VYi=1,...,Ny,

where %% is the i-th component of vector 2, and 3 is the
hyperparameter of the Softplus function. Notice that for large
values of 3, Softplus uniformly converges to a rectified linear
unit (ReLU) activation function (see Figure [3), which is given
element-wise by

Zi = Né(zk) =

Ve=1,...,K, Yi=1,...,N.

ReLU activation function is commonly used in recent NN
applications. The reason why we decided to use Softplus will
be become clear in Section [I-H

%, = max(Z;,0),

D. Convolutional neural networks

A CNN can be regarded as a sub-type of a feed forward
NN. It is generally not fully connected, and a large number
of weight and bias elements of matrices W}, and vectors by
share the same values, as affine maps Ay are defined using
the operation of matrix convolution [43].

Figure [] depicts a deep CNN, describing the exact NN
topology used in approximating function F of our problem.
The structure of the NN is determined by an educated guess
of the authors and by experimentation. Besides the input and
output layers, we have six additional hidden layers. Unlike in
a general NN, each layer in our CNN is described using the

K

Fig. 2. Example of a fully connected neural network.
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Fig. 3. Softplus and RELU plot.

layer length L, and the number of channels C. The number of
neurons in each layer is given by Ny = Lj - C}, and neurons
are grouped in Lj groups of size Cj. In Figure 4] a single
square depicts one group of neurons. The exact number of
neurons within each group (the number of channels C}) is
written inside each square. The number of groups in each
layer is given by a number written just below each layer. For
instance, the total number of neurons in the second layer is
equal to 24 - 32 = 768.

To define affine map Ay, each layer in a CNN has an
additional integer hyperparameter called the kernel size Sk.
In Figure ] only the first (input) layer and the last of the
hidden layers have kernel sizes S; = 1 and S7; = 1. All the
other hidden layers have kernel size equal to 3. Notice that
the kernel size is not applicable to the output layer, as the
output layer only collects the output of the last hidden layer
and is not applying any further affine maps. All kernels are
depicted by a number of empty squares equal to the kernel
size Si. A downward arrow indicates that a kernel window
is sliding over the layer in steps, performing a computation
of the affine map. This means that the convolution operation
can be in each step regarded as a smaller affine map Ay, that
is defined only between the neurons in the groups covered
by the kernel window in layer £ — 1 and the neurons in the
single output group in layer k. In each step of the convolution
operation on layer £k — 1 we use the same map Ay

Each convolution layer has two additional integer hyper-
parameters called a stride and a padding size. The stride is
the number of groups by which each kernel window moves
in every step of the computing convolution operation. The
first and second layers have the stride equal to 1 and the
third to fifth layers have the stride equal to 2. This is the
reason why the lengths Lj; of the fourth to sixth layer are
decreasing by a factor of 2. For the sixth and seventh layers,
the stride is not applicable as the convolution operation is
trivially performed only in the single possible position. The
padding controls whether the kernel window can slide over
the side of the layer or not. If we let the kernel windows slide
over the side of the layer, as for the second to fifth layer, the
padding is equal to 1 and we substitute zeros for the input
in the convolution operation in place of the non-existing data.
For the first, sixth and seventh layer, the padding is equal to
0, which means we do not let the kernel window slide over
the side of the layer.

In matrix representation Wy, of affine map Ay, lot of matrix
components are equal to zero and lot of other non-zero matrix
components share the same values. We actually have, for the
kernel size equal to 1 the block diagonal matrix Wy, and for
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Fig. 4. Deep convolutional neural network structure.
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Fig. 5. Block matrices: a) diagonal; b) tridiagonal

the kernel size equal to 3 the block tridiagonal matrix Wy,
see Figure 5] Every block is of size C} x C,—1. For the kernel
size equal to 1, every block in the block diagonal matrix Wy,
representing affine map Ay, is exactly the same block. For the
kernel size equal to 3, every 3 vertical blocks in the block
tridiagonal matrix representation are exactly the same blocks.
The bias vector by, also has repeating components. Regardless
on the kernel size, components of by repeat every C, entries,
which means each neuron group in a single layer shares the
same biases.

Notice that a CNN, for the same number of neurons,
typically has much lower number of parameters defining
affine maps Ay, than a fully connected NN. For instance,
in our case the number of parameters defining map As is
C555,C3 + C3 = 3104, whether the number of parameters
defining map A3 in a fully connected neural network with the
same number of neurons would be NoN3 + N3 = 590592.

E. Training feed-forward neural networks

To train a neural network simply means to optimize matrices
W, and vectors by in order to minimize a chosen loss
function over a dataset. Since we use CNNs, we must respect
the block diagonal or tridiagonal structure of matrices Wy
having many shared values, as discussed in Section [[I-D]

The dataset is generated by solving a number of instances
of the lower-level optimization problem, for as many ran-
,pﬁs‘), and subsequently
evaluating value of the target objective function (I.1), i.e.
F (ﬁS’pgS’-n,pE?).

The loss function is the mean squared error between the

dom samples of vector (p‘lES,péEs, .

NN computed value F (plES,p§S7..., pﬁsl) and the lower-

level exact solution F (plES,pgs, . ’pﬁ'sl)'

As customary in NN training, the optimization of Wy
and by is performed using a variant of a gradient descent
optimizer. The dataset is split into training and validation

datasets, using 80 : 20 percent split ratio. The optimization
is done in multiple epochs over the training dataset, where
gradients are computed using backpropagation [46|] and au-
tomatic differentiation [47]] of NN. The validation dataset is
used only for evaluating the loss function after every epoch of
training and not for a gradient computation. Computed values
of the loss function on the validation dataset are used to asses
numerical viability of the training process and to select the
best trained network, having the lowest value of the validation
loss. Before the start of the first epoch of training, Wy and
by, are initialized to random values.

More details about our exact training procedure, together
with all optimizer and training hyperparameter values are
given in Section

F. Meta-optimization numerical scheme

We devised an iterative numerical scheme for comput-
ing a sequence of CNN approximations F; of the other-
wise intractable objective function F. In each iteration i
we first generate dataset D; of random sampled vectors
dependently and uniformly random sampled from the interval

ES ES :
Pl ) For each t € 7, values of p;7 are in-

centered around pgf’cnt of length at most ZpE Srad respecting
the condition —ps < pfls < pSh. In the first iteration we

set pE 5% equal to zero and ppo@ such that it allows all

permissible values of pFS, ie. —pdi* < pES < pi".

In practice, we noticed that our numerical scheme runs
better if we introduce an additional small relative tolerance
€ > 0 on the dataset creation. Thus, for the maximum length
of the sampling interval we actually use QpE is’rad(l +¢€) and
allow all permissible values of pf’S to be from the interval
—pf(1 +¢) < pf¥ < p*(1 + €). The intuition behind
introducing the tolerance is that our CNN would better ap-
proximate objective function F' for parameter values pf‘f near
the boundary values —p{* and pSt, if the dataset is allowed
to include values p?ls a bit outside the interval [—pdis, p¢h].

Each element in dataset D; is now a pair of random vector
(p%%,pgi . 7PF}S|,¢> and a value F <p5§,p§§, . vpﬁ?,i) of
the target objective function (T.I), computed by solving a
single instance of the lower-level problem.

Next, in each iteration we separately train a number of
CNNs, Fj,, indexed by n € {1,...,M}, to approximate
function F'. For every additional training on the same dataset
D; we obtain a subtly different CNN, as the training process



is intrinsically stochastic (random initialized network weights
and random sampled stochastic gradient descent mini batches).

Now, as every trained CNN is a function Fi,n, we sym-
bolically insert function I:_'m into the upper-level problem ob-
jective function. For this we use our modeling environment’s,
which is AMPL, defining variables feature. Defining variables
are a type of variables that are substituted out, potentially in
a nested way, by their declaration expression before reaching
the solver. This results in solving a single-level optimization
meta-model which maximizes

Max Fip (p?fj,pg?, - pﬁsl) (1.8)
subject to constraints (I.2)—(T.3) and
0<pl <q™ -z, vt (1.9)
0<piy <g®™-(1-ah), Wt (1.10)
pry = p;y piy, vt (1.11)
tE‘:iS,Cnt _ E?,rad < p P?ZS ont pE?,rad7 Ve, (1.12)

for every trained CNN indexed by n. The additional constraint
(1.12) is used to respect that dataset D; is created centered
around p;’ P51t yusing an interval length at most 2p; ; pSrad,

Notice, as we used the differentiable Softplus activation
function in our CNN, and as a CNN is just a composition
of affine maps and element-wise activation functions, that Fm
are differentiable functions. In case of using a ReLU activation
function, the resulting an would not be differentiable. We
experimentally established that lower values of the Softplus
hyperparameter 3 result in lower overall neural network ap-
proximation accuracy, and higher values give rise to solver
instabilities in the single-level meta-model optimization step.
We also tried to use ReLU instead of Softplus, but we were
plagued with solver instabilities and slowdown. Using Softplus
showed to be much more efficient.

For every trained CNN we now have the computed profit
Cin = M_ax F; n(pf) and the computed optimal ES

(dis)charged energy (pl S D5 ,pﬁslm) Now we can
verify what are the actual proﬁts obtained for the computed
optimal ES (dis)charging schedule. This is done by optimizing
the lower-level problem independently of the upper level
with fixed ES (dis)charging schedule. The actual profit is
determined as V; , = Max — Zt p;ElSn - A¢, Where )\; is in this
case the bus balance constraint marginal, computed by default
by many interior point solvers.

Additionally, we compute mean optimal ES energy ex-
change quantities

»7—2;0“” Vter

and for the computed mean vector (pl 3 p2 o pﬁs‘z) we
again optimize the lower-level problem with fixed ES charging
values to the obtained mean optimal vector, arriving at the
mean actual profit V; = —3, p¥S, ;- X, Considering the
mean actual profit is justified, because averaging over optimal
solutions of many different CNN models Fi,n, each one
approximating an intractable objective function F', it can result

in a better mean solution By looking at the actual test results
(i.a. Tables [[l] and [[V) we see that this approach is justified
in practice, i.e., in some iterations the mean actual profit V;
can be higher than any of the actual profits V; ,,.

Finally, we have to choose values of pE St and ppoRd
for a next iteration of the meta-optimization scheme. For
p?zs "I we either chose the optimal ES (dis)charging quan-
tities (p]{j%n, pgin, ceey pﬁs‘zn) from CNN that achieved the
highest actual profit V;,, or in the case V; is the highest
profit, we chose the mean optimal ES (dis)charging quantities
(plEf?,p%?,--.

To choose p, ;7 , we first compute the maximum
over all t e 7 of the standard deviations of samples
{pt o n< M } More precisely, we compute

; —Maxstd{p“n: <n<M}.

For the next iteration we take a smaller value between the

ES,rad .
current p, ;""" and a new estimate,
ES,rad | ES,rad
pt i+1 MlIl{p y Ve Ji}a

for every t € T, where y is a hyperparameter. Note that ptEZSffd

does not depend on ¢. It has the same value for every t.

For the next iteration of our meta-optimization scheme,
dataset D;,; is created around pE?jflnt, which is the best
optimal ES (dis)charging schedule computed in the current
iteration, i.e., ES charging and discharging energy quantities
that produce the highest profit. The dataset width, which is
decided by pE Zsffd, is influenced by how close together are
optimal ES schedules predicted by different CNNs trained
in the current iteration. In case different CNNs produce
relatively close optimums, the computed standard deviation
o; is relatively small, and a next iteration dataset is going
to be concentrated around a smaller neighborhood of pE Zsff ‘.
On the contrary, in case different CNNs produce optimums
that are more apart, the computed standard deviation o; is
relatively large, and a next iteration dataset is going to span
over a bigger neighborhood of pgffft Notice that pES rad g
non-increasing between iterations.

In the end, we have to prescribe a stopping criterion for
our meta-optimization scheme. We choose to stop further
iterations if there is no improvement in the actual profit of the
current iteration compared to the previous one. We empirically
conclude (see Section that the convergence of our meta-
optimization scheme is achieved in few iterations (see Tables
[} V] and [V). An overview of the numerical optimization
scheme is provided in Algorithm

ITI. CASE STUDY
A. Implementation details

For the dataset creation, each instance of the lower-level
problem, one for every dataset entry, was solved using AMPL
running KNITRO 12.3 solver. A single dataset entry consists
of a 24-dimensional floating point vector (plES, pQES7 e pﬁsl)
as an input and a single floating point value as an output,
which corresponds to the computed upper-level profit for given
(plES,pQES, .. ,pﬁ?) values (computed as — », pPS-\;, where



A is the marginal of an active power bus balance constraint at
the ES location). In total, we used 10° dataset entries and thus
the same number of independent lower levels to be solved. To
reduce the computation time, computations were carried out in
parallel running on a dual Intel Xeon CPU computer system
over a total of 40 physical cores.

We implemented the CNN depicted in Figure |4| in Python
using PyTorch library [48]. CNN hyperparameters are de-
scribed in in Section and the hyperparameter 3 of the
Softplus activation function is set to 50.

Training of the CNN was implemented using fast.ai library
[49] using training procedure similar as in [S50]. We used
the Ranger algorithm [51f], employing the RAdam optimizer
[52], the parameter lookahead [53]], and the flat-cosine one-
cycle policy [54]]. After experimenting with training thousands
of models we set RAdam hyperparameters to the following
values: the number of training epochs to 500, the maximum
learning rate to 0.003, the training batch size to 128, the weight
decay factor to 0.01 and the exponential decay rates of the first
and second moments to values 0.95 and 0.85.

In every iteration of the meta-optimization scheme we
trained a total of M = 60 CNNs on the same dataset. Our
computer system was equipped with 6 Nvidia Quadro RTX
6000 GPUs, each having 16 Gb of RAM, so we could train
all CNNs in parallel, training 10 CNNs per GPU.

In the meta-optimization scheme there are two hyperparam-
eters to consider. After experimenting with different values, for
the relative tolerance of the dataset creation we take ¢ = 0.1,
and for the other hyperparameter we take v = 5. A value
of hyperparameter v influences the decreasing rate of pE Z-S’md
through subsequent iterations. Using lower values of v pro-
duces lower values of pf?’rad in later iterations, which can lead
to a sub-optimal optimization result in the end, and a higher
value tends to slow down the speed of convergence. Table
shows the pE?’rad decrease throughout all iterations from
the case study. Notice the difference in speed and intensity
of pgis’rad decrease in different transmission networks. More
significant and faster decrease, as seen in e.g. 3_lmbd, suggests

Algorithm 1 Numerical optimization scheme

1: repeat

2: Generate a new random dataset (10° entries)

3: Evaluate LL response for the dataset

4 Train 60 NNs to approximate LL response

5 Optimize the ULs with inserted NNs into objective

function

6: Determine actual profits by optimizing LL with fixed
ES (dis)charging schedule

7: Select the best actual solution out of:

« the best direct result;
« the result obtained averaging decisions from all
optimized NNis;

8: For the next iteration, reduce and concentrate the
dataset spatial size in the neighborhood of the best
solution found from this iteration

9: until The best solution is worse than in the preceding

iteration

that all 60 trained CNNs yield closer optimums, which can
be explained by inherently tamer underlying optimization
landscape. On the contrary, much less significant decrease
in pEiS’rad, as seen in e.g. 73_ieee_rts, suggests that CNNs
are struggling more to approximate the optimums, which is
probably induced by more demanding optimization landscape.

B. Results

We tested our method on four separate transmission system
meshed networks from PGLib-OPF [55] library: 3_Imbd,
57_ieee, 73_ieee_rts and 300_ieee. Topologies of the three
large networks are provided in Fig. in the Appendix.
The three-bus network is of typical triangle topology. A time
dimension was added to the data by applying the load scaling
factors for winter workdays available from IEEE RTS-96 [56].
Set of time steps 7 has 24 elements for different hours in a
single day. In case of 73_ieee_rts network, we also applied
0.85 scaling factor to the transmission lines capacities to
induce congestion. The networks were otherwise unmodified.
For an ES to have an impact on the energy market prices, a
feature for which the bilevel modeling is used for, it has to
be very large. Thus, we model the ES with 100 MWh (1 p.u.)
capacity. Charging and discharging efficiencies were both set
to 90% and maximum ES (dis)charging power to 60 MW.

Table [lI| presents an average wall time per iteration for
each step of the proposed meta-optimization scheme. Dataset
creation is a cumulative time for three sub-steps: generation
of 10° random vectors of pI*S, solving lower-level problems
for every dataset entry, and data format post-processing of
the generated dataset, which mostly include disk input-output
(I0) operations. Most of the time is consumed for solving 10°
lower-level problems. Notice that larger transmission system
networks require more solver time. NN training is the time
consumed for parallel CNN models training. This time does
not depend on the transmission system network size, as it
depends solely on the CNN and training hyperparameters.
The last step is solving the meta-models, which is performed
sequentially for all 60 trained CNNs. A possible speedup
of using parallel computations in this step would not be
significant compared to the total time used per iteration.

TABLE 1
VALUES OF pEf’md FOR DIFFERENT TRANSMISSION NETWORKS AND
ITERATIONS
Iter | 3_Imbd | 57_ieee | 73_ieee_rts | 300_ieee
1 0.6 0.6 0.6 0.6
2 0.0618 0.3265 0.4894 0.2302
3 0.0319 0.2123 0.3465
4 0.0129 0.1876 0.3465
5 0.0129
6 0.0129
TABLE II

AVERAGE PROCESSING TIME IN SECONDS PER SINGLE ITERATION OF THE
META-OPTIMIZATION SCHEME.

Dataset . . Solvin, Component
creation NN training meta—moc%els totalptime
[s] [s] (mean =+ std) [s] [s]
3_lmbd 471 5118 60x (7.7 + 10.0) 6051
57_ieee 1774 5129 60x(11.7 £+ 10.6) 7605
73_ieee_rts| 3644 5125 60% (4.0 +2.6) 9009
300_ieee 28256 5245 60%(2.0 +1.9) 33621




Time for solving the meta-models can vary greatly between
different CNNs and different iterations. We consider this to
be a normal solver behavior due to binary variables z$". For
the dataset creation and the NN training the average wall time
is pretty much unchanged between different iterations, so we
supply only the mean times without the standard deviation.
Component total time is a sum of the dataset creation time,
the NN training time, and the mean time for solving meta-
models. Our model is highly scalable as long as the lower-level
problem can be evaluated a number of times under reasonable
time and resources. An alternative method from our two-part
paper [12] and [[13] has scalability issues when using lower
levels with larger networks since it computes the lower and the
upper level simultaneously so the solution process can diverge.
Table [II| indicates that our method scales reasonably even for
73 and 300 bus systems.

Tables present optimization results in terms of the ES
computed and actual profits acquired in four different trans-
mission systems. Actual profits are obtained in the verification
Step 6 of Algorithm[I|by optimizing the lower level with fixed
ES charging decisions as explained in Section We also
compare actual profits achieved by our method to actual profits
achieved by solving a bilevel ES market optimal bidding using
i) the AC OPF model and single-level reduction approach from
the two-part paper [12] and [13] and ii) a standard DC OPF
[35] model in the lower level. AC OPF single-level reduction
approach results in slightly higher actual profits compared to
the NN approach, but its solution process fails to converge for
73- and 300-bus networks. Actual DC OPF profits are profits
that would occur in the AC OPF market, but by using bidding
decisions from the DC OPF bilevel model. In our tables, the
best NN computed profit is the maximum value of C; ,, over
all 60 NNs, the best NN actual profit is the maximum value
of V; ,, over all 60 NNs, and the mean pES actual profit is Vi,
where ¢ is the iteration number and NNs are indexed by n. By
design, the best profit is always achieved in the penultimate
iteration of our method, as a worse profit in the last iteration
actually triggers the stopping criterion. The number of required
iterations differs between the transmission systems and ranges
from 2 to 6. Tables demonstrate we also achieved a
high first iteration accuracy, since the greatest second iteration
improvement of the actual profit is only 0.03%. Note that the
total time per iteration presented is somewhat higher than a
component total time in Table [[I} as it includes an additional
overhead for some data reformatting and IO disk operations.
Also, note that we decided to present profits using up to
four decimal places, so that small improvements between

TABLE III
PROFITS FOR 3_LMBD NETWORK (ES AT BUS 3).

Total|[Mean pES| Best NN | Best NN |Single-levell e opp
R reduction
Iter| time | actual actual | computed actual
[s] rofit profit profit actual profit profit
: p 12, [13]
1 |8386/2016.0583(2016.2954|2011.5968
2 [71582016.8395]2016.7695|2018.1744
3 [6965|2016.8414(2016.8271|2017.5707
4[6910[2016.8416|2016.8339(2016.0533| 20168762 |1986.4979
5 [69032016.8505|2016.8015|2017.2495
6 [6882(2016.8452(2016.8096|2017.1350

TABLE IV
PROFITS FOR 57_IEEE NETWORK (ES AT BUS 1).

Total|[Mean pES| Best NN | Best NN |oingle-levell e opp
. reduction

Iter| time | actual actual | computed actual
[s] rofit profit profit actual profit profit

P (12], [13]

1 |8305[1564.0254|1564.1351|1564.3315

2 |8724]1564.5929|1564.6218|1572.8308

3 (8886(1564.9676| 1564.8713| 1568.1618| |>0°-2053 |1542.5985

4 19088(1564.9433|1564.9370(1570.1936

TABLE V
PROFITS FOR 73_IEEE_RTS NETWORK (ES AT BUS 101).

N

Total |Mean pS| Best NN | Best NN S;gglli'tl;‘fl DC OPF
Iter| time | actual actual |computed actual
[s] profit profit profit actual profit profit
1120, 1130
1 [10234[5503.2526|5512.4143(5525.5078|
2 [T0186[5503.26085512.6547|5520.6102 .
3 10159]5503.8406|5512.75585510.5750| \© Solution|4990.1637
4 [10192(5503.7870|5512.1032(5513.6247

subsequent iterations in Table become visible, which also
reaffirms the optimality of the first iteration result. Relative
differences in profits using all three approaches (single-level
reduction, NN and bilevel DC OPF) are clearly presented in
Figure [6| where the highest profits are normalized to 100%. On
3- and 57-bus networks, the NN approach achieved 99.9987%
and 99.9848% of ES profits of the single-level reduction.
Profit increase over the DC OPF model was 1.5% for 3_lmbd,
1.5% for 57 _ieee, 10.5% for 73_ieee network, and 16.4% for
300_ieee network.

Figures present ES (dis)charging profiles for all four
test cases. The 3-bus network is characterized with relatively
small charging and discharging powers (up to 10 MW). In
such small network, the ES (dis)charging would change the
marginal producer, thus significantly affecting the market
prices. In the 57-bus network the DC model discharges at
over 40 MW in hour 12. Since it is a lossless model, it does
not predict any price change due to ES arbitrage. On the
other hand, the AC model captures price changes incurred
by the ES and charges more evenly throughout the day.
The 73-bus network features high price volatility, thus the
ES makes the most cycles. In the 300-bus network, the DC

TABLE VI
PROFITS FOR 300_IEEE NETWORK (ES AT BUS 1).

Single-level

Total |Mean piS| Best NN | Best NN reduction | PC OPF
Tter| time | actual actual |computed actual profit actual
[s] profit profit profit (2] IEIS] profit

p—

33482(1396.5797(1397.0175|1377.6627

7 [364811396.7220(1397.0172[1399.9574| O solution | 1199.9745
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Fig. 6. Normalized profits with different approaches over four different
transmission system meshed networks.
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model also assumes no price impact by its actions, which is
incorrect, while the NN approach, which better captures the
price changes due to the ES (dis)charging, is more conservative
and discharges at low power in ours 17-19. Figure§7H8] also
show that the NN approach produces almost identical ES
charging profile as the single-level reduction approach from
[12]] and [[13].
IV. CONCLUSION

This paper presents a novel numerical method which utilizes
deep convolutional neural networks to efficiently solve a wide
class of bilevel optimization problems arising in deregulated
power systems. The method uses evolutionary meta-modeling
to bypass the lower-level problem, thus it is insensitive to the
lower-level complexity, which is the main culprit in rendering
bilevel optimization problems intractable. the model success-
fully deals with nonlinear nonconvex lower-levels that include
binary variables, as long as the lower-level can be efficiently
solved as a single-level problem by treating all upper-level
variables as parameters. We demonstrate the application of
the method to solve the ES market participation problem
using AC OPF in the lower level, which enables electricity
market operators to perform highly accurate market clearing
procedure. However, the proposed framework is generally

applicable for any other bilevel optimization problem in the
power systems domain.

Additionally, our method is scalable in terms of the required
precision versus the run time. Using larger training datasets
we could train an NN having more parameters than we used
here. We would obtain more accurate optimums, but would
also require longer run time. On the other hand, if we are
satisfied with lower precision, we could use a smaller dataset
for training a smaller neural network, and our method would
run faster.

Finally, we note that this procedure can be easily imple-
mented to trilevel models, as they are generally solved by
first merging the middle- and the lower-level problems into a
mixed-integer problem with equilibrium constraints, see e.g.
[57], which is a direct application of our proposed procedure.
The obtained single-level problem then acts as a lower-level
problem to the original upper-level problem. The resulting
bilevel structure is commonly iteratively solved using a cutting
plane algorithm. However, a direct implementation of our
procedure to trilevel problems will be explored in future.

V. APPENDIX: LOWER LEVEL

This section includes the formulation of the lower level, i.e.
the exact AC OPF in the rectangular coordinates. Objective
function (A.T)) minimizes production costs, (A.2) and (A3) are
bus balances, (A4)—(A.7) are power flow equations, (A.8) and
(A9) are generator production limits, (A.I0) is line thermal
limit, is voltage limit and is reference bus
constraint. V;"; and thl, 7F and 7! are real and imaginary parts
of voltage magnitude and transformer tap ratio respectively.
All other notations are the same as in our previous paper [11]].
The simulated bidding process assumes the strategic market
participant is the one in the upper level, while bids of all other
participants are deterministic. Such modeling is a common
practice and is described in detail in [[58]. In reality, sufficient
historical offering data to derive other participants’ offering
curves are available in some markets, e.g. see [59] for the
Alberta market.
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