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Abstract—Modern transmission systems operation and planing
problems involve computationally difficult optimizations. Trans-
mission system operators forecast, monitor and manage power
flows to ensure that the system always operates within permitted
limits. This paper develops an AC Optimal Power Flow (AC
OPF) algorithm intended to enhance numerical efficiency for
commonly occurring cases in real-world transmission system
networks. These systems include discrete devices, e.g. control-
lable transformer tap, generator automatic voltage control and
variable shunt reactor (VSR), whose operational models are too
computationally demanding for general nonlinear optimization.
The developed algorithm divides the computational burden in
two parts. The first part solves AC OPF with computationally
demanding binary variables fixed to the initial power flow state,
while the second part tries to find a better solution for fixed
variables using more tractable AC OPF approximation. The
efficiency of the approach is demonstrated on the Croatian
transmission network and real operating data. The optimization
succeeds to satisfy the initially exceeded operating constraints.
Results also indicate that the direct approach that solves for
all variables simultaneously using the exact nonlinear AC OPF
model is computationally intractable for the considered cases.

Index Terms—AC Optimal power flow, voltage-var control,
industrial transmission network

NOMENCLATURE

A. Sets and Indices
E Tuple set of branches in forward orientation,

indexed by pe, i, jq.
NVC Set of automatic controlled buses, indexed by

i and j.
NGVC Tuple set of automatic controlled buses and

generators performing control at that bus,
indexed by pi, kq.

S Sets of shunts, indexed by s.
τ Set of time steps, indexed by t.
R Set of infeasible automatic voltage control

states, indexed by r.

B. Parameters
τα
e , τ

β
e Transformer tap magnitude coefficients.

bαs , b
β
s Shunt susceptance coefficients.

V point
t,i Generator automatic voltage control setpoint.

Qg

k
,Q

g

k Generator minimum and maximum reactive
power production.

V i,V i Bus minimum and maximum voltage magni-
tude.

xP up
t,i,r ,xP dn

t,i,r Infeasible voltage control state memory.

C. Variables
Qg

t,k Generator reactive power production.
Vt,i Bus voltage.
τt,e, y

τ
t,e Branch tap magnitude and integer switch

state.
bsht,s, x

sh
t,s, y

sh
t,s Shunt susceptance, binary and integer major

and minor block switch states.
xup
t,i , x

dn
t,i Indicative binary variable for reached upper

or lower limit of generator reactive power
production.

1 . INTRODUCTION

Optimal power flow (OPF) is a well studied optimization
problem in power systems, first introduced in 1962 [1]. Its
objective is to find an operating point that minimizes the cost
of power generation while satisfying operating constraints and
meeting demand. Implementation of the OPF algorithms in
transmission system operators’ control centers, for real-time
and near real-time applications, generally faces serious chal-
lenges. The real-world OPF algorithms need to be fast, robust,
easy to interpret, and with realistic values for control variables.
Simplified models that rely on the DC approximation of power
flows. e.g. [2], are not sufficiently accurate and in operating
centers the systems operators need to rely on accurate AC rep-
resentation of power flows. Not less important is a procedure
for control variables adjustment, whether it is automatic or
manual. As there are different cost functions usually applied
for OPF algorithms in control centers, like security-constrained
OPF (SCOPF) or standard volt-var control OPF (VVC OPF),
it is also important to establish secure and reliable sequence
for the running OPF to avoid overlapping and confusing the
operating staff.



Authors in [3] evaluated the technical requirements for
implementation of a centralized VVC function within an
existing supervisory control and data acquisition or energy
management systems. The challenges of the implementation
are related to the limitations of the existing network model and
mathematical modelling of network elements, input data, mea-
surement quality and state estimation output reliability. In [4],
the authors tested a coordinated real-time VVC algorithm on
the IEEE 118-bus system in a simulated real-time environment.
The results demonstrate system stability with new dispatch
points and significant improvement in the system-wide voltage
profiles as compared to an uncontrolled scenario. This has
proved, according to the authors, that the developed algorithm
is ready to move to the implementation phase. However,
the authors did not consider generators’ automatic voltage
control commonly encountered in actual power systems. If
the automatic voltage control is not controllable by the system
operator, which can occur for example if the generator is in a
neighbouring country or simply has fixed control settings, then
the automatic voltage control model includes computationally
difficult binary variables, as explained in Section 2 . In this
paper, we address numerical tractability of the VVC OPF
in real-world transmission system with generators’ operating
under the automatic voltage control.

The difficulty of solving AC OPF with integer variables
arises from poor warm-start capabilities of interior-point al-
gorithm used in general nonlinear solvers. Poor warm-start
capabilities mean that each node in the branch-and-bound
search tree is as difficult as the root node, or even more
difficult if the node is infeasible, as the algorithm is also weak
in infeasibility detection. In the literature, there are numerous
AC OPF relaxations and approximations developed with the
aim of improving numerical tractability of AC OPF with
integer variables. Commonly used relaxation models are Jabr’s
second-order cone programming (SOCP) model [5] and Shor’s
semidefinite programming (SDP) model [6]. Jabr’s SOCP
model is well know to perform well for radial networks, but
large errors occurs with meshed transmission networks. Shor’s
SDP model is know to be very computationally demanding
and solvable in only rare dedicated SDP solvers. Linear
approximation models, such as [7], generally have larger errors
than the quadratic models and iterative solution refinements
are required to decrease the error which can not be fully elim-
inated. The convex quadratic approximation in [9] has been
shown to be of high accuracy for meshed transmission system
networks in single iteration with numerical tractability on a
par with other convex quadratic models. As such, we develop
an algorithm that solves an industrial transmission system
AC OPF problem using a both exact AC OPF model due to
required accuracy and more tractable AC OPF approximation
from [9] to improve on assumed fixed integer variables in the
exact model. Ultimately, tractability results are compared to
the direct approach that solves for all variables simultaneously
using exact nonlinear AC OPF model.

Contribution of the paper consists of the following:
‚ We develop an algorithm for solving voltage-var control

AC OPF in transmission networks considering the gen-
erators’ automatic voltage control.

‚ To prove its effectiveness, the algorithm is compared to
the approach that solves for all variables simultaneously.

Rest of the paper is structured as follows. Section 2
mathematically states and explains the proposed algorithm.
Case study section 3 is divided in two parts: the first part
shows benefits for the system in terms of the achieved voltage
magnitudes and active power loses. The second part compares
computation time and objective function result of the devel-
oped algorithm with the approach that solves for all variables
simultaneously. Section 4 provides relevant conclusions and
guidelines for future work.

2 . MATHEMATICAL MODEL

The developed AC OPF Algorithm 1 for transmission net-
works has two parts. The first part, the Step 2, computes OPF
under the assumption that no generator operating automatic
voltage control changes its control state: i) from constant
voltage (if the reactive power production at the initial power
flow state is within the bounds); ii) constant reactive power
production if the reactive power production is at the generators
limit initially. The second part of the algorithm (Steps 3–6)
addresses possible generators’ voltage control state changes.
It computes the OPF with control state as a variable. The dif-
ference between the first and the second part of the Algorithm
is that the first part uses exact nonlinear polar OPF [8] so
its solution is not susceptible to approximation or relaxation
errors, while the second part uses convex polar second-order
approximation (CPSOTA) AC OPF model [9], which is more
efficient for computing computationally difficult binary vari-
ables associated with the generators’ voltage control states.
The final solution is always obtained from Step 2, i.e. the exact
polar model, so it does not contain an OPF approximation.
The second part of the Algorithm merely checks for more
favourable voltage control states, which, if found, is used to
initialize a new algorithm loop with new voltage magnitudes
and reactive powers at the automatic voltage controlled nodes.
The algorithm runs until no improvement in control states is
found. The following paragraphs explain the models and the
second part of the algorithm in more detail.

TSOs perform aftermarket checks of the system security
and minimize active power losses. The two responsibilities are
usually preformed separately. The n ´ 1 security is addressed
by optimizing active power production and transversal control
transformers. On the other hand, voltage magnitudes and
losses are addressed by optimizing reactive power production,
longitudinal control transformers and VSRs. In the context of
this paper, we consider the VVC OPF. The goal of VVC is
to bring voltage magnitudes within the nominal range and to
minimize system losses (in terms of MWh) or their expenses
(in monetary units). The objective function (1.1) represents the
TSO’s perspective, which is to minimize active power losses.

Min
ÿ

pe,i,jqPE

pPt,e,i,j ` Pt,e,j,iq (1.1)



Algorithm 1 AC OPF
1: repeat
2: Exact polar model

‚ control variables: controllable generators, trans-
former taps and VSRs;

‚ fixed V or Q at automatic voltage controlled nodes.
3: repeat
4: Presolve [9]

‚ if feasible, expands the list of quadratic con-
straints that are likely to cause relaxation er-
rors;

‚ if infeasible, forbids current automatic voltage
control states combination.

5: Convex polar second-order approximation [9]
‚ control variables: controllable generators and

automatic voltage control states;
‚ fixed transformer taps and VSRs;
‚ expands the list of quadratic constraints that

are likely to cause relaxation errors with con-
straints that resulted in relaxation errors.

6: until No relaxation errors and feasible presolve
7: until No automatic voltage control state change

Equation (1.2) defines tap magnitude τt,e of tap changer
transformers controllable by the TSO. It is a variable occurring
in the denominator of the power flow equations. In the second
part of Algorithm 1 it is always a parameter to retain the
convex quadratic optimization form. In the first part, it is a
variable if the transformer is controllable and a parameter if it
is not. yτt,e is an integer variable whose values range from the
most negative switch position to the maximum positive one.
Equation (1.3) defines the controllable VSRs’ susceptance.
VSRs consist of major switchable segments and many minor.
xsh
t,s represents a binary variable indicating if a major segment

is turned on and ysht,s is an integer variable indicating how many
minor susceptance segments are switched on. In case a VSR
is not controllable, its suscenpance is treated as a constant.

τt,e “ τα
e ` τβ

e ¨ yτt,e, @t, e (1.2)

bsht,s “ bαs ¨ xsh
t,s ` bβs ¨ ysht,s, @t, s (1.3)

Generators’ automatic voltage control has a discrete char-
acteristic displayed in Fig. 1. Either the generator’s reactive
power is within the production bounds and maintains the
voltage magnitude constant or the reactive power has already
reached the limit so the voltage magnitude drifts away from
the control set value V point

t,i . Equations (1.4)–(1.7) define
the three segments in the figure. Binary indicator variable
xup
t,i forces the reactive power production to the maximum

value and voltage magnitude to be lower or equal than the
control set value if equal to one. If binary variable xdn

t,i takes
value one, it analogously forces the generator’s reactive power
to the minimum value and voltage to be greater of equal
than the control set value. If both binary variables are zero,

then the corresponding bus voltage magnitude is equal to the
control set point and reactive power is within the production
bounds. Both binary variables can not have value one since
that is an infeasible combination, i.e. reactive power can not
be simultaneously at the upper and at the lower bound.

Vt,i ´ V point
t,i ď pV i ´ V point

t,i q ¨ xup
t,i , @t, i P NVC (1.4)

V point
t,i ´ Vt,i ď pV point

t,i ´ V iq ¨ xdn
t,i , @t, i P NVC (1.5)

Qg
t,k ´ Qg

k
ď pQ

g

k ´ Qg

k
q ¨ p1 ´ xup

t,iq, @t, pi, kq P NGVC

(1.6)

Q
g

k ´ Qg
t,k ď pQ

g

k ´ Qg

k
q ¨ p1 ´ xdn

t,iq, @t, pi, kq P NGVC

(1.7)
The second part of the algorithm consists of CPSOTA AC

OPF [9] in combination with a presolve also described in
paper [9]. CPSOTA is a local AC OPF model for an operating
point consisting of the voltage magnitude Vt,i and angle θop

t,i ,
which is here computed in the first part of the algorithm. The
presolve (Step 4 in Algorithm 1) selects the relaxed quadratic
constraints likely to cause relaxation errors for the operating
point by evaluating constraint marginals and replaces them
with linear equality. It runs for the operating point determined
in the first part of Algorithm 1 and for the current fixed
automatic voltage control states from either the polar model
(Step 2 in Algorithm 1) or the CPSOTA (Step 4 in Algorithm
1), whichever is run beforehand in the algorithm flow chart.
The presolve does not have any discrete variables so it is
computationally tractable despite it being nonconvex. If it
finds that the current automatic control state determined by
the previous run of CPSOTA AC OPF is infeasible, which
can occur since the CPSOTA is an approximation, it adds a
constraint (1.8) that prevents this combination from occurring
again. Parameters xP up

t,i,r and xP dn
t,i,r represent the determined

infeasible automatic voltage control state combination r. In the
first inner loop, r is always an empty set of states which means
that there is no constraint (1.8) for the first pass. Described part
of the algorithm runs in loops until the presolve is feasible and
no CPSOTA relaxation errors occur which ensures accuracy.
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Fig. 1: Generators’ automatic voltage control operation diagram.



ÿ

t,iPNVC

:xP up
t,i,r “1

p1´xup
t,iq `

ÿ

t,iPNVC

:xP up
t,i,r “0

xup
t,i `

ÿ

t,iPNVC

:xP dn
t,i,r “1

p1´xdn
t,iq `

ÿ

t,iPNVC

:xP dn
t,i,r “0

xdn
t,i ě 1, @r

(1.8)

3 . CASE STUDY

The transmission system network data includes Croatia and
major nodes of the neighbouring countries for four time peri-
ods on 7 December, 2020: 15:05–15:15, 16:10–16:20, 17:20–
17:30 and 18:10–18:20 CET. At these timestamps generally
high voltage magnitudes were observed. Croatian transmission
network system was chosen primarily because there is a real-
time VVC OPF already functional in the Croatian transmission
system operator’s national control center, so it is beneficial
to investigate if there is a possibility to improve already
very reliable and efficient OPF tool. Croatian transmission
network has an unusual topology on the 400 kV level without
a closed ring through its own system (visualization of the
system is available at [10]), what makes it difficult to optimise
voltages and gain cost function benefits, adjusting the control
variables solely in the Croatian transmission network system.
The network has 411–414 buses (110 kV, 220kV and 400 kV
nodes), depending on the time period and data is in p.u. or
dimensionless. Each time period consists of the initial state,
and the final state 10 minutes after the initial one, which
is considered sufficient for a system to react to the TSO’s
control. The optimization is performed for the initial state,
but since every control has a time delay, the optimization
results are displayed for the final state. The initial state is real
measured data and the final state is simulated system power
flow response, based also on real measurement data, but with
changed control variables. The case study is divided in two
parts. The first part demonstrates the benefits of optimization
on voltage magnitudes and changes in active power losses.
The second part compares the results in terms of the solution
time and achieved objective function of the proposed algorithm
and the direct approach where the exact polar model is used
to solve for all variables concurrently.

1) Voltage magnitudes and active power losses:
Tables I–IV show voltage magnitudes for the network at

different times for the select high-voltage buses in Croatia.
Red colored voltage magnitudes Vinit and Vnoopt represent
the observed overvoltages at the initial state and the final
state without the TSO’s control intervention. Results in the
last column show the simulated voltage magnitudes Vnoopt

for the system at the final state with the TSO’s actions deter-
mined based on the optimization of the initial system state.
In all cases, overvoltages are removed by the optimization
despite the uncertain realization of the 10-minutes timespan.
Comparing the final times with and without optimization, the
optimization case resulted in higher losses despite the objective
function being the loss minimization. This occurs since the
optimization needs to lower voltages to satisfy the operation
constraints. Lower voltage magnitudes lead to higher active
power losses.

TABLE I: Voltage magnitudes for 15:05–15:15 time period for the initial state
and the final state with and without control actions.

Bus ID
Nominal
voltage

(kV)

Vmax

(p.u.)
Vinit

(p.u.)
Vnoopt

(p.u.)
Vopt

(p.u.)

60032 400 1.05 1.05023 1.04868 1.04423
60066 400 1.05 1.05141 1.04729 1.03994
60129 400 1.05 1.05117 1.04805 1.04516
60150 400 1.05 1.05625 1.05309 1.04795
60015 220 1.11818 1.0974 1.09649 1.10841
60067 220 1.11818 1.08951 1.08553 1.06711
60071 220 1.13636 1.10589 1.10214 1.08867
60090 220 1.11818 1.08637 1.08242 1.06442
60109 220 1.11818 1.10897 1.10436 1.08758
60145 220 1.13636 1.14109 1.13881 1.13532
60151 220 1.11818 1.11163 1.10807 1.09758
60158 220 1.11818 1.08676 1.08502 1.06332
60170 220 1.11818 1.11434 1.1064 1.08459

Losses
(MW): 31.38 33.27 34.14

TABLE II: Voltage magnitudes for 16:10–16:20 time period for the initial
state and the final state with and without control actions.

Bus ID
Nominal
voltage

(kV)

Vmax

(p.u.)
Vinit

(p.u.)
Vnoopt

(p.u.)
Vopt

(p.u.)

60032 400 1.05 1.04786 1.04676 1.04427
60066 400 1.05 1.0459 1.0464 1.04034
60129 400 1.05 1.04595 1.0454 1.04402
60150 400 1.05 1.05051 1.04896 1.0464
60015 220 1.11818 1.09493 1.08874 1.08977
60067 220 1.11818 1.08482 1.08752 1.0706
60071 220 1.13636 1.099 1.1001 1.08634
60090 220 1.11818 1.08171 1.08408 1.06836
60109 220 1.11818 1.10309 1.10539 1.09212
60145 220 1.13636 1.14012 1.13872 1.13446
60151 220 1.11818 1.10498 1.09928 1.09082
60158 220 1.11818 1.08441 1.0865 1.06818
60170 220 1.11818 1.10276 1.10701 1.09173

Losses
(MW): 33.44 34.72 34.76

TABLE III: Voltage magnitudes for 17:20–17:30 time period for initial state
and final state with and without control actions.

Bus ID
Nominal
voltage

(kV)

Vmax

(p.u.)
Vinit

(p.u.)
Vnoopt

(p.u.)
Vopt

(p.u.)

60032 400 1.05 1.04871 1.04843 1.04581
60066 400 1.05 1.06264 1.06193 1.04956
60129 400 1.05 1.05058 1.05044 1.04825
60150 400 1.05 1.05245 1.0527 1.04915
60015 220 1.11818 1.08872 1.08896 1.09017
60067 220 1.11818 1.09757 1.0943 1.05565
60071 220 1.13636 1.10508 1.10454 1.08303
60090 220 1.11818 1.09316 1.08969 1.05221
60109 220 1.11818 1.11276 1.11156 1.08564
60145 220 1.13636 1.13252 1.13225 1.1285
60151 220 1.11818 1.10385 1.10341 1.09037
60158 220 1.11818 1.0942 1.09007 1.04767
60170 220 1.11818 1.11386 1.11359 1.09191

Losses
(MW): 34.23 33.76 34.14



TABLE IV: Voltage magnitudes for 18:10–18:20 time period for initial state
and final state with and without control actions.

Bus ID
Nominal
voltage

(kV)

Vmax

(p.u.)
Vinit

(p.u.)
Vnoopt

(p.u.)
Vopt

(p.u.)

60032 400 1.05 1.04949 1.04908 1.04587
60066 400 1.05 1.05804 1.05274 1.04569
60129 400 1.05 1.05145 1.05004 1.04859
60150 400 1.05 1.05424 1.05319 1.04933
60015 220 1.11818 1.09156 1.08671 1.09209
60067 220 1.11818 1.07984 1.07268 1.05114
60071 220 1.13636 1.10491 1.10185 1.07115
60090 220 1.11818 1.0769 1.07001 1.04891
60109 220 1.11818 1.10287 1.09748 1.07938
60145 220 1.13636 1.12953 1.13185 1.11852
60151 220 1.11818 1.10475 1.10297 1.0849
60158 220 1.11818 1.07743 1.07054 1.04271
60170 220 1.11818 1.11438 1.11275 1.07319

Losses
(MW): 33.71 36.07 36.94

2) Computation time and objective function:
The proposed algorithm is compared to the direct approach

where all variables are concurrently determined using the exact
nonlinear polar AC OPF [8]. All nonlinear and mixed-integer
nonlinear models were solved using Knitro, while all mixed-
integer quadratic models were solved using FICO Xpress, all
on a PC laptop with i7-8565U CPU. Simulation results are
displayed in Table V for the initial times. Losses, MIP gap
and Comp. time Alg. 1 part 1 columns refer to the first part of
the algorithm and for the solution of the concurrent solve. The
last two columns refer to the second part of the algorithm. Out
of the four presented cases, the concurrent solve solves only
the case at time 16:10. However, its solution is suboptimal,
i.e. worse than achieved with the proposed algorithm, despite
0 reported MIP gap. This can occur due to nonconvexity
of the model. For nonconvex models, the branch-and-bound
technique can not guarantee optimality since individual nodes
that the solver solves also can not guarantee optimality. Using
the proposed approach, in all cases zero MIP gap solution
was found. The maximum computation time for the first part
was 126 seconds. The second part of the algorithm attempts
to confirm or improve the current solution. For 16:10 time
instance, the second part confirmed that the initial assumption
for automatic voltage control states is optimal. For other
cases it reached the imposed computation time limit of 30
minutes before finding a better solution. The computation time
is long due to required low mip gap (0%) and large test
network. The optimization could in principle run indefinitely
due to exponential worst case branch and bound search tree
complexity. Computation time limit is imposed to avoid stalled
optimization. However, despite the reached time limit, all cases
have a solution since the first part computed successfully.

4 . CONCLUSION

The proposed case study shows the importance of dividing
difficult problems into easier ones. Binary variables are com-
putationally demanding for nonlinear solvers, which is why the
proposed algorithm outperforms the concurrent optimization
of all variables. The second part of the algorithm attempts to
improve the assumption on the values of the fixed difficult

binary variables in the first part. It confirms the assumption in
one case and finds no better solution in the other three cases.
The optimization was performed on Croatian the transmission
network and has brought it withing the operating limits in
all cases. The achieved losses were higher than without opti-
mization, however, this is expected since voltage magnitudes
were decreased to remove overvoltages. Future research will
be focused on further improving the numerical tractability.
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