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Solving Bilevel AC OPF Problems by Smoothing
the Complementary Conditions – Part I: Model

Description and the Algorithm
K. Šepetanc, Student Member, IEEE, H. Pandžić, Senior Member, IEEE and T. Capuder, Member, IEEE

Abstract—The existing research on market price-affecting
agents, i.e. price makers, neglects or simplifies the nature of AC
power flows in the power system as it predominantly relies on
DC power flows. This paper proposes a novel bilevel formulation
based on the smoothing technique, where any price-affecting
strategic player can be modelled in the upper level, while
the market clearing problem in the lower level uses convex
quadratic transmission AC optimal power flow (AC OPF), with
the goal of achieving accuracy close to the one of the exact
nonlinear formulations. Achieving convexity in the lower level
is the foundation for bilevel modeling since traditional single-
level reduction techniques do not hold for nonconvex models.
The bilevel market participation problem with the AC OPF
formulation in the lower level is transformed into a single-level
problem and solved using multiple techniques such as the primal-
dual counterpart, the strong duality theorem, the McCormick
envelopes, the complementary slackness, the penalty factor, the
interaction discretization as well as the proposed smoothing
techniques.

Due to an extensive amount of information and descriptions,
the overall work is presented as a two-part paper. This first
part provides a literature overview, positions the work and
presents the model and the solution algorithm, while the solution
techniques and case studies are provided in the accompanying
paper.

Index Terms—Bilevel models, AC OPF, complementary condi-
tion smoothing functions.

NOMENCLATURE

A. Abbreviations

OPF Optimal power flow.
SOC Second-order cone.
SOCP Second-order cone programming.
QC Quadraticaly constrained.
SDP Semidefinite programming.
IV Current-voltage.
LPAC Linear programming AC.
QPAC Quadratic programming AC.
ES Energy storage.

The authors are with the Innovation Centre Nikola Tesla (ICENT)
and the University of Zagreb Faculty of Electrical Engineering and
Computing (e-mails: karlo.sepetanc@fer.hr; hrvoje.pandzic@fer.hr; tomis-
lav.capuder@fer.hr). Employment of Karlo Šepetanc is funded by the Croatian
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CPSOTA Convex polar second-order Taylor approximation.
KKT Karush–Kuhn–Tucker.
NLP Nonlinear programming.
OP Operating point.
NC Nonconvex.
LL Lower level.

B. Sets and Indices

N Set of buses, indexed by i and j.
β ES’s bus location singleton, indexed by i.
R Singleton set containing reference bus, indexed by i.
E,ER Tuple set of branches, forward and reverse orientation,

indexed by pe, i, jq.
NP, NPR Tuple set of paired buses aligned with branch E

and ER orientations, indexed by pi, jq.
G,Gi Set of all generators and array of sets of generators at

bus i, indexed by k.
Li Array of sets of loads at bus i, indexed by l.
Si Array of sets of shunts at bus i, indexed by s.
τ Set of time steps, indexed by t and h.
Ξr¨s Set of decision variables.

C. Parameters

:ck, 9ck, ck Generator cost coefficients.
P d

t,l,Q
d
t,l Active and reactive power load.

gsh
s , bshs Bus shunt conductance and susceptance.

ge, g
fr
e , gto

e Branch π-section conductances.
be, b

fr
e , b

to
e Branch π-section susceptances.

τe,σe Branch tap magnitude and shift angle.
P g

k ,P
g

k Generator minimum and maximum active power
production.

Qg

k
,Q

g

k Generator minimum and maximum reactive
power production.

Se Branch maximum apparent power.
V i,V i Bus minimum and maximum voltage magnitude.
V op
t,i ,θop

t,i Assumed bus voltage magnitude and angle op-
erating points.

Λt,e,Γt,i,j Boolean parameters which indicate whether to
use the quadratic form of the voltage and the
cosine representations, respectively.

Φt,e,i,j Boolean parameter indicating if the branch
power limit is imposed.

SoE Energy storage capacity.
ses Energy storage maximum power.
ηch,ηdis Energy storage (dis)charging efficiency.
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D. Variables

Continuous variables
P g
t,k, Q

g
t,k Generator active and reactive power production.

Pt,e,i,j , Qt,e,i,j Branch active and reactive power flow.
V ∆
t,i , θ

∆
t,i Bus voltage magnitude and angle change.

xcost,i,j Cosine approximation.
qVt,e Second-order Taylor series voltage magnitude

term approximation.
SoEt Energy storage state-of-energy.
pest , qest Energy storage active and reactive power.
pcht , pdist Energy storage (dis)charging active power.

Binary variables
xp
t Disables simultaneous charging and discharging

of energy storage.

I. INTRODUCTION

Increasing the integration of renewable energy resources,
as well as the electrification trends in the context of the zero-
carbon energy future, pushes the power system operation to its
technical limits. Operational challenges and increased needs
for system flexibility require advances towards new, close
to real-time, market products. However, the existing market
bidding models do not adequately model the relevant technical
aspects, such as voltage magnitudes, node angles and loses, as
they rely on simplifications or approximations in the optimal
power flow models. Although market designs both in Europe
and the US still employ the DC optimal power flow (DC OPF)
to perform market clearing, there is a growing interest for
using AC optimal power flow (AC OPF), primarily to gain a
more accurate insight into the network state and enable a more
complete market design that accounts for ancillary services,
see e.g. [1] and [2].

Due to the interest of the power industry, there has been a
growing interest for development of tractable and accurate AC
OPF models. Unlike the linear DC OPF problem, where linear-
ity of the power flow approximation results in good numerical
computability even with many binary variables, the non-
convexity of the AC OPF problem makes it computationally
challenging. The AC OPF models can be grouped into three
categories: exact models, relaxations and approximations.

Exact OPF models are based on an exact power flow
function, most commonly expressed either using rectangular
coordinates [3], as a nonconvex quadratic optimization prob-
lem, or polar coordinates [4], as a nonlinear function. There
is also the IV (current-voltage) rectangular formulation [5],
typically used for modeling loads with irregular power-voltage
curves, also known as ZIP loads. On the other hand, relaxation
models provide an upper bound to the objective function value
of the exact models. Thus, if an exact optimization achieves
the same objective function value a relaxation model, then
this solution is necessarily the global one. Otherwise, global
optimality can not be guaranteed.

One of the first relaxation models, which was developed
by Jabr [6], is based on the second-order cone relaxation
(SOCP), which can be used to relax any nonconvex quadratic
formulation. It achieves good results in radial distribution

networks due to the absence of the closed loop angle con-
sistency criterion. However, when applied to the transmission
network, it results in objective function errors of app. 2% [7],
which is comparable to the total transmission network losses.
An extension of the Jabr’s model, developed by Coffrin, and
called quadratically constrained relaxation (QC) [8], utilizes
the McCormick envelopes to tighten the feasibility area based
on maximum bus voltage angle differences. The QC model is
at least as tight relaxation as the SOCP relaxation [9]. Shor’s
semidefinite relaxation (SDP) [10] is numerically the most
demanding out of the commonly used models. It is also at least
as tight as the SOCP relaxation [9] and usually more accurate
than the QC relaxation. The QC model is not considered in
this paper since it normally results in similar accuracy as the
Jabr’s model, but at an increased computation time [9]. Shor’s
SDP model is also not considered, as there are no solvers that
can solve a combination of nonlinear and SDP optimizations
incurred by the solution techniques presented in the Part II
paper.

In approximations, unlike relaxations, the objective function
can deviate both positively and negatively from the global
optimum. The commonly used DC model, a linear model,
also belongs to this category. Linear models in general have
difficulties with modeling active power losses since they are
in quadratic dependence on the voltage magnitude difference.
To prevent negative active power losses, the linear model
from [11] uses penalty factors in the objective function. The
model from [12] approaches the problem of quadratic losses
by introducing nonconvex piecewise linear losses, but at an
expense of binary and integer variables. Similar approaches
are also published in [13] and [14]. On the other hand, the
linear AC model (LPAC) from [15] approximates the quadratic
function with a series of linear inequalities that form a convex
space and, thus, do not require binary variables. Except the ap-
proximation errors, this model also exhibits relaxations errors
due to inequality constraints that replace the intended equality
bound. The convex quadratic model (QPAC) was published in
2013 as a still active patent [16]. If there are no errors due to
deviation from the inequality bounds, this model approximates
the power flows well. However, occurrence of these errors
depends on the system state and network configuration.

From the reviewed models, only LPAC can potentially
increase its accuracy by using a presolve to approximate the
operating point data. Unfortunately, it does not fully use this
potential and sometimes it is even more accurate when using
the cold start assumptions. This is in detailed discussed in our
previous work [17], demonstrating the benefits of warm start
information. In this paper we extend that model by applying
it to applicability to the bilevel problems with AC OPF in the
lower level. Convex polar second-order Taylor approximation
of AC power flows (CPSOTA) from [17] achieves high accu-
racy by incorporating both the voltage magnitude and the angle
second-order Taylor components and by replacing some of the
quadratic inequality constraints with linear equality constraints
to avoid constraint relaxation errors due to convexification. The
replacement is determined by the presolve also developed in
[17]. CPSOTA acts as a local AC OPF approximation at a
reference operating point which can be well estimated in a
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Fig. 1: Visualization of the upper-level and lower-level interaction in bilevel
problems with market clearing based on AC OPF in the lower level.

bilevel optimization by simply assuming no market influence
of the strategic market player. Good numerical tractability of
the proposed method is, however, a result of the smoothing
techniques presented in Part II, Section II.G.

Convex optimal power flow formulations are a foundation
for strategic bidding models relying on bilevel optimization.
Generally, in such models the upper-level problem determines
the optimal bidding strategy of a strategic player, i.e. the
player whose bidding decisions can affect market prices. This
player’s bidding prices or quantities affect the power flows and
market prices. The lower level is used to simulate the market
outcome pertaining to the strategic player’s bidding actions,
as visualized in Figure 1. Examples of such bilevel models
are bidding of large consumers [18], generators [19], energy
storage [20] and aggregators [21]. The considered markets may
range from the day-ahead market, such as in [18]– [21], to a
number of markets, such as in [22], where the strategic agent
takes part in the day-ahead as well as in the reserve/balancing
market. Bilevel models can also be used to determine an
optimal investment by considering a number of representative
market clearing days within a year. As an example, in [23] the
authors seek an optimal generation investment considering the
expected market-clearing conditions.

Strategic agents are not the only ones that use bilevel
problems with market clearing in the lower level. The system
operators could be interested in increasing the social welfare
by investing in new transmission lines [24]. As an example,
in [25] and [26] the authors consider transmission expansion
planning where the SOCP relaxation of the AC OPF is
formulated in the lower level. Both papers compare the results
only to the option where the lower-level model is replaced with
the DC OPF approximation and do not discuss the aspects of
achieving accuracy of the exact formulations. More complex
models include three levels, one considering the independent
agent investments, another considering the system operator
investments, and the final one to simulate market outcomes.
For example, [27] formulates a trilevel model where the upper-
level problem optimizes the system operator’s transmission
line and energy storage investments, the middle-level problem
determines the merchant energy storage investment decisions,
and the lower-level problem simulates a market clearing pro-
cess for representative days using DC OPF. There are multiple
ways of solving trilevel problems, but the first step is always to

merge the middle- and lower-level problem into a single-level
equivalent.

For conciseness, in this paper we consider a bilevel struc-
ture, however, the described procedure can be employed to
trilevel problems as well. Also for brevity reasons, we choose a
simple energy storage bidding model in the day-ahead market
as the upper-level problem and focus on the AC OPF in the
lower-level problem and on effectively converting and solving
the initial problem.

For a strategic player (or a system operator) to solve a
bilevel problem, it needs to first convert it into a single-
level equivalent. However, the conversion techniques do not
hold for nonconvex models. An excellent review of bilevel
optimization approaches can be found in [28] and [29], where
different techniques, later applied for solving the problem
described in this paper, are explained in detail. Traditionally,
the reduction techniques of transforming a bilevel problem
into a single-level one are based on the primal-dual theory
and the Karush–Kuhn–Tucker optimality conditions [30]. Both
techniques follow the idea of replacing the lower-level problem
with a set of equations and inequalities that have the same
solution as the original lower-level problem. This set of
equations is then added as a set of constraints to the upper-level
problem, finally forming a single-level problem equivalent to
the initial bilevel problem.

The main obstacle in the AC OPF formulations for strategic
bidding are complementarity condition constraints, which are
difficult for any interior point solver since they do not satisfy
the Mangasarian-Fromovitz constraint qualification, meaning
there is no strictly feasible point, making the nonlinear pro-
gramming numerically unstable [31]. This aspect is one of
the reasons why, to the best of the authors’ knowledge,
all existing bilevel market models rely either on the DC
approximation [32] or linearized AC models [33]. This is
because in these cases the complementary conditions can be
reshaped into a mixed-integer linear form and solved using the
branch-and-bound method. We found only two publications
that either explicitly address or can be generalized to bilevel
formulations and include exact, relaxed or approximate AC
OPF formulations in the lower-level problem. The authors
of [34] propose a bilevel problem of the worst contingency
under attack, where they address the nonlinearities of the AC
model as convex SOCP and SDP relaxations. However, this
single-level reduction approach is applicable only because the
interaction variable between the upper level and the lower
level is binary, thus allowing for an exact reformulation of
the resulting bilinear terms using the McCormick envelopes.
In the second one [1], the authors propose a successive linear
algorithm based on the dual form of a linear Taylor expansion
of the IV-ACOPF model to solve the AC OPF. Their approach
can be expanded to bilevel modeling with AC OPF-constrained
market clearing in the lower level, however, their algorithm
on the presented 14 ieee network does not converge. After
six iterations and a DC OPF-based starting point, the LMP
oscillations are at 0.20%. If the upper level is added to the
model, its interaction with the lower level could potentially
further destabilise convergency. It also uses generally non-
trivial constraint violation penalties and constrains maximum
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deviations of the Taylor delta variables.
Besides the techniques listed above, there are some interest-

ing mathematical tools whose applicability has not yet been
explored in the power systems community. In paper [35], the
authors examine the Lipschitzian and differential properties
of smoothing functions and their application to optimization
with SOC complementarity constraints. Application of the
smoothing techniques still results in nonlinear expressions,
however, much easier to solve since they have all derivations
in every point of the function. An example of smoothing a
linear complementary condition is shown in Figure 2. The
perpendicular lines represent the following three constraints
x ě 0, y ě 0 and x ¨ y “ 0, while the corresponding
smooth curve is represented by only a single smooth con-
straint x ` y ´

a

x2 ` y2 ` 2ϵ2 “ 0. Despite the promising
theoretical foundations of the reformulated smooth constraints
to achieve good numerical tractability with interior point based
solvers, the technique has not yet been practically used or
demonstrated. In this paper we employ the novel smoothing
techniques, first proposed and developed in [35], to tractably
solve bilevel problems with AC OPF in the lower level. This
allows us to avoid model linearization and use any AC OPF
formulation of continuous SOCP class or simpler. Smoothing
technique implementation details are explained in Section II.G
of Part II of this work.

Based on the above, the paper brings the following original
contribution:

‚ For the first time we develop and present a mathematical
formulation of a bilevel problem based on the smoothing
techniques, where a strategic player’s profit maximization
is in the upper level, while the AC OPF problem is
the lower level. For demonstration purposes, we choose
energy storage (ES) as the strategic player making the
bidding decisions in the upper-level problem. However
any other strategic player, e.g. generator, demand re-
sponse, aggregator of different flexibility sources, or a
system operator can be plugged into the upper level.
Furthermore, the model can be easily expanded into an
investment model that considers multiple representative
days.

‚ The bilevel problem is reduced to a single-level prob-
lem using the known techniques, i.e. primal-dual coun-
terpart, strong duality theorem, McCormick envelopes,
complementary slackness, penalty factor and interaction
discretization. For all these techniques the computational
tractability, effort and accuracy are analyzed and issues
are detected and elaborated.

‚ All the developed models and codes are made available
as open access to the scientific community at [36].

Rest of the paper is structured as follows. Section II
mathematically states the proposed model. It is divided into
two parts: Subsection II-A presents the initial model, which
is reformulated into its SOC form in Subsection II-B. Section
III introduces the algorithm and presolve to obtain the model’s
prerequisites and verifies the accuracy of the obtained solution.
Solution techniques and the case studies are presented in the
companion paper.
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Fig. 2: Smoothing example of the perpendicular relation.

II. MATHEMATICAL MODEL

The presented bilevel optimization model consists of a
simple ES active and reactive power bidding model in the
upper level and the AC OPF in the lower level. Mathematical
focus is on demonstrating an accurate and computationally
tractable bilevel AC OPF solution.

A. Initial Model

1) Upper Level:
The upper level considers a large ES unit located at bus

i P β. The objective function (1.1) maximizes its profit by
performing the day-ahead energy and reactive power market
arbitrage while its impact on the prices is acknowledged by
the dual variables λ1,t,i for active power and λ2,t,i for reactive.
Constraint (1.2) models the storage (dis)charging process
considering its efficiency, while (1.3)–(1.5) limit the maximum
ES capacity, charging and discharging rates. Constraint (1.6)
combines the charged and discharged energy into a cumulative
quantity pest . Binary variable xp

t disables simultaneous charg-
ing and discharging which could otherwise occur in periods
with negative prices. However, in many cases in the case study
xp
t is dropped-out to evaluate the performance of the solution

techniques on a fully continuous model. When xp
t is dropped

out, constraints (1.4) and (1.5) are conceptually not needed
due to constraint (1.7) which limits ES the apparent power.

Max
Ξul

ÿ

t,iPβ

ppest ¨ λ1,t,i ` qest ¨ λ2,t,iq (1.1)

SoEt “ SoEt´1 ` pcht ¨ η
ch ´ pdist {η

dis, @t (1.2)

0 ď SoEt ď SoE, @t (1.3)

0 ď pcht ď ses ¨ xp
t , @t (1.4)

0 ď pdist ď ses ¨ p1´ xp
t q, @t (1.5)

pest “ pcht ´ pdist , @t (1.6)

ppest q
2 ` pqest q

2 ď psesq2, @t (1.7)

The upper-level set of variables is Ξul “

tpest , pcht , pdist , qest , SoEt, x
p
t u. xp

t is an optional binary
variable that can be neglected in case of nonnegative market
prices.
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2) Lower Level:
Transmission-constrained electricity markets perform mar-

ket clearing by running an OPF optimization. Here we model
the network using the CPSOTA [17]. The CPSOTA model
is chosen due to convexity which is needed to satisfy the
single-level reduction regularity conditions and due to superb
warm-start transmission system OPF accuracy as demonstrated
in [17] as well as in the case study of the second part
of this paper. The CPSOTA model is designed to exploit
a meshed network structure to achieve accuracy and should
not be used with radial networks. Both the loads’ and ES
bids are considered inelastic, meaning they will always be
cleared. This assumption holds if the loads (including the ES
when buying) bid very high prices and the ES bids very low
price when selling energy. Thus, both the loads and the ES
(dis)charged energy pest are modeled as parameters in the lower
level. This simplification is introduced to shorten the upper-
level objective function convexification (4.1) and its follow-up
versions appearing in the Part II paper.

The lower level minimizes the quadratic production costs in
its objective function (2.1). It is assumed that generators bid
reactive power at zero prices. Bus power balance is imposed in
(2.2) and (2.3). The upper-level variables pest and qest appear
in constraints (2.2) and (2.3) only for the bus at which the
ES is located, i.e. when condition : iPβ under the variable is
true. Our constraint writing style also assumes that summation
indices are first fixed by the outer for all statement and then the
summation rolls over to the remaining unfixed indices. This
way

ř

pe,i,jqPEYER Pt,e,i,j , @t, i sums the active powers from
all branches originating from bus i. Constraints (2.4)–(2.7) are
active and reactive power flow equations. Since these are based
on the Taylor expansion, the computed voltage magnitude is
equal to the assumed operating point value V op

t,i plus deviation
V ∆
t,i . Similarly, the computed voltage angle is θop

t,i ` θ∆t,i. To
shorten the expressions, parameters cpst,e,i,j and cmst,e,i,j
are defined over the other basic parameters, i.e. the ones
present in the nomenclature, as introduced in the Appendix
(A.1.1)–(A.2.2). Constraints (2.8.1) and (2.9.1) are second-
order Taylor voltage magnitude and angle approximations,
respectively, whose variables qVt,e and xcost,i,j also appear
in the power flow equations. To achieve convexity, these
constraints are inequalities as no quadratic equality is convex.
At the solution point, it is intended that these constraints are
binding so that no errors occur due to a swap of the equality
sign with inequality. To achieve this, there is a presolve
step in the optimization, as described in Section III, which
decides on swapping the quadratic inequality constraints that
are likely to diverge from the inequality boundary with simple
linear equality constraints (2.8.2) and (2.9.2), thus avoiding
gross errors. Applying the linear equality constraint variants
disregards the second-order part of the Taylor. Even the zero-
order Taylor expansion is exact at the expansion point, so
disregarding a few second-order terms on per-branch or per-
bus pair basis does not worsen the solution significantly in the
vicinity of the expansion point. Constraints (2.10) and (2.11)
limit the generators’ production capabilities. Constraint (2.12)
limits the maximum branch apparent power. Since (2.12)
is a major source of computationally demanding quadratic

equations, the presolve reduces their number for the main
solve using a preset threshold at the initial operating point.
More on the multi-step presolve procedure which finds an
approximate operating point V op

t,i , θop
t,i and decides on the

use of quadratic constraints, i.e. determines the values of the
Boolean parameters Λt,e, Γt,i,j and Φt,e,i,j , can be found in
Section III. Finally, constraint (2.13) sets the reference bus
angle to zero and constraint (2.14) sets the voltage magnitude
bounds.

Min
Ξll

Ωp :“
ÿ

t,k

p:ck ¨ pP
g
t,kq

2 ` 9ck ¨ P
g
t,k ` ckq (2.1)

ÿ

kPGi

P g
t,k ´

ÿ

lPLi

P d
t,l ´

ÿ

pe,i,jqPEYER

Pt,e,i,j ´ pest
:iPβ

´ ppV op
t,i q

2`2¨V op
t,i ¨V

∆
t,iq ¨

ÿ

sPSi

gsh
s “0, @t, i : λ1,t,i

(2.2)

ÿ

kPGi

Qg
t,k ´

ÿ

lPLi

Qd
t,l ´

ÿ

pe,i,jqPEYER

Qt,e,i,j ´ qest
:iPβ

` ppV op
t,i q

2`2¨V op
t,i ¨V

∆
t,iq ¨

ÿ

sPSi

bshs “0, @t, i : λ2,t,i

(2.3)

Pt,e,i,j “ ppV
op
t,i q

2`2¨V op
t,i ¨V

∆
t,iq¨pge`gfr

e q{τ
2
e `

qVt,e{2

´cpst,e,i,j ¨pV
op
t,i ¨V

op
t,j ¨xcost,i,j`V ∆

t,i ¨V
op
t,j `V ∆

t,j ¨V
op
t,i q{τe

´cmst,e,i,j V̈
op
t,i ¨V

op
t,j ¨pθ

∆
t,i´θ∆t,jq{τe,

@t, pe, i, jq P E : λ3,t,e,i,j (2.4)

Pt,e,i,j “ ppV
op
t,i q

2`2¨V op
t,i ¨V

∆
t,iq¨pge`gto

e q`
qVt,e{2

´cpst,e,i,j ¨pV
op
t,i ¨V

op
t,j ¨xcost,j,i`V ∆

t,i ¨V
op
t,j `V ∆

t,j ¨V
op
t,i q{τe

´cmst,e,i,j V̈
op
t,i ¨V

op
t,j ¨pθ

∆
t,i´θ∆t,jq{τe,

@t, pe, i, jq P ER : λ4,t,e,i,j (2.5)

Qt,e,i,j “ ´ppV
op
t,i q

2`2¨V op
t,i ¨V

∆
t,iq¨pbe`bfre q{τ

2
e

`cmst,e,i,j ¨pV
op
t,i ¨V

op
t,j ¨xcost,i,j`V ∆

t,i ¨V
op
t,j `V ∆

t,j ¨V
op
t,i q{τe

´cpst,e,i,j ¨V
op
t,i ¨V

op
t,j ¨pθ

∆
t,i´θ∆t,jq{τe,

@t, pe, i, jq P E : λ5,t,e,i,j (2.6)

Qt,e,i,j “ ´ppV
op
t,i q

2`2¨V op
t,i ¨V

∆
t,iq¨pbe`btoe q

`cmst,e,i,j ¨pV
op
t,i ¨V

op
t,j ¨xcost,j,i`V ∆

t,i ¨V
op
t,j `V ∆

t,j ¨V
op
t,i q{τe

´cpst,e,i,j ¨V
op
t,i ¨V

op
t,j ¨pθ

∆
t,i´θ∆t,jq{τe,

@t, pe, i, jq P ER : λ6,t,e,i,j (2.7)

qVt,eěpgè gfr
e q¨pV

∆
t,iq

2{τ 2
e 2́¨gë cospθ

op
t,i´θop

t,j´σeq V̈
∆
t,i V̈

∆
t,j{τe

`pge`gto
e q¨pV

∆
t,jq

2, @t, pe, i, jqPE : Λt,e (2.8.1)

qVt,e “ 0, @t,pe, i, jqPE : ␣Λt,e : λ10,t,e,i,j (2.8.2)

xcost,i,j ď 1´pθ∆t,i´θ
∆
t,jq

2{2, @t, pi, jq P NP : Γt,i,j (2.9.1)

xcost,i,j “ 1, @t, pi, jq P NP : ␣Γt,i,j : λ13,t,i,j (2.9.2)

P g
kď P g

t,k ď P
g

k , @t, k : µ
3,t,k

, µ3,t,k (2.10)
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Qg

k
ď Qg

t,k ď Q
g

k , @t, k : µ
4,t,k

, µ4,t,k (2.11)

P 2
t,e,i,j`Q2

t,e,i,jďS
2

e, @t,pe, i, jqPEYER : Φt,e,i,j ,

: λ14,t,e,i,j , λ15,t,e,i,j , µ5,t,e,i,j

(2.12)

θop
t,i ` θ∆t,i “ 0, @t, i P R : λ16,t,i (2.13)

V i ď V op
t,i ` V ∆

t,i ď V i, @t, i : µ
6,t,i

, µ6,t,i (2.14)

Lower level set of primal variables: Ξll “ tθ∆t,i, V
∆
t,i , Pt,e,i,j ,

Qt,e,i,j , P
g
t,k, Q

g
t,k xcost,i,j , qVt,eu.

B. SOC Constraint Reformulation

To derive the dual problem needed for a single-level re-
duction, quadratic primal constraints are first converted into
their equivalent SOC form. Otherwise, the direct conversion
would result in a general nonlinear formulation provided in
[37], as opposed to our SOCP dual. Thus, this conversion is
essential for solution techniques reliant on the SOCP form,
i.e. primal-dual counterpart, McCormick envelopes, interac-
tion discretization and smoothing techniques from the Part
II paper. A SOC constraint conversion is nontrivial because
there exist infinitely many SOC formulations of the same
convex quadratic constraint. On the other hand, there also
exists a formula with a unique positive semidefinite solution
for conversion of the convex quadratic constraints to the SOC
form [38]. However, we decided to manually choose our own
SOC form since the general formula can result in a form with
more than minimum possible number of cone variables and
extensively complicated coefficients.

The resulting basic cone constraints are (3.1.1) and (3.2.1).
Together with the substitution defining (3.1.2)–(3.1.5) and
(3.2.2)–(3.2.4), they are equivalent to the initial quadratic
voltage magnitude (2.8.1) and angle (2.9.1) constraints, respec-
tively. To shorten the expressions, coefficients, i.e. parameters,
p1,t,e,i,j , p2,t,e and p3,t,e,i,j are defined in the Appendix
(A.3)–(A.5). Also, it is useful to note that the basic cone
constraints share the same dual variable with their right-hand-
side substitution constraint.

The remaining quadratic parts of the model are the branch
apparent power limit constraint (2.12), which is already in the
SOC form, and the objective function (2.1). To derive the dual,
we recognize three ways of dealing with a quadratic objective
function:
‚ apply the QP duality theory;
‚ transform it into a single large (multidimensional) SOC

constraint;
‚ transform it into multiple three dimensional SOC con-

straints.
In this work we apply the QP duality theory to the ob-

jective function, while the rest of the model is converted
into the dual using the SOCP procedure. By the QP duality
theory, a dual is derived by writing the Karush–Kuhn–Tucker
(KKT) conditions and then eliminating the remaining primal
variables, which remain after derivations due to the squares
in the primal objective function, by substituting them from
the KKTs into the Lagrange function as described in lecture
[39]. The SOC constraints are converted into the dual by

using the mathematical theorem that states that the basic
cones are self-dual [40], i.e. for every primal basic SOC
constraint there is a dual basic SOC constraint (see primal-
dual constraint pair (4.10) and (4.11) from Part II paper). Other
constraints are linear and their KKT conditions can be used
to derive the dual. This way the dual model is of the same
optimization class as the primal, i.e. the objective function
is convex quadratic and the constraints are SOC. The write-
out of the dual is available in the Appendix. The two other
objective function transformation approaches are not preferred
over the QP procedure since they enlarge both the primal and
dual models and, since the SOC constraints are inequalities,
introduce additional complementary slackness conditions.

w2
1,t,e,i,j`w

2
2,t,e,i,j`w

2
3,t,e,i,jďw

2
0,t,e,i,j , @t,pe, i, jqPE :Λt,e

(3.1.1)

w1,t,e,i,j“p1´ qVt,eq{2, @t,pe, i, jqPE : Λt,e : λ7,t,e,i,j

(3.1.2)

w2,t,e,i,j“p1,t,e,i,j ¨ V
∆
t,i ´ p2,t,e ¨ V

∆
t,j ,

@t, pe, i, jqPE : Λt,e : λ8,t,e,i,j

(3.1.3)

w3,t,e,i,j“p3,t,e,i,j ¨ V
∆
t,i , @t, pe, i, jqPE : Λt,e : λ9,t,e,i,j

(3.1.4)

w0,t,e,i,j“p1` qVt,eq{2, @t, pe, i, jqPE : Λt,e : µ1,t,e,i,j

(3.1.5)

f2
1,t,i,j`f2

2,t,i,jďf2
0,t,i,j , @t, pi, jqPNP :Γt,i,j (3.2.1)

f1,t,i,j“pθ
∆
t,í θ∆t,jq{

?
2, @t,pi, jqPNP :Γt,i,j :λ11,t,i,j (3.2.2)

f2,t,i,j“ xcost,i,j´3{4, @t, pi, jqPN
P :Γt,i,j :λ12,t,i,j (3.2.3)

f0,t,i,j“´xcost,i,j ` 5{4, @t, pi, jqPNP :Γt,i,j :µ2,t,i,j (3.2.4)

The reformulated lower-level set of variables is Ξr “ Ξll Y

tw0,t,e,i,j , w1,t,e,i,j , w2,t,e,i,j , w3,t,e,i,j , f0,t,i,j , f1,t,i,j , f2,t,i,ju.

III. ALGORITHM AND PRESOLVE

The presented bilevel model requires as an input both
the numerical and the Boolean parameters that need to be
determined beforehand. This section introduces the algorithm
to obtain prerequisites and verify the accuracy of the obtained
solution.

The lower-level problem consists of an AC OPF model
based on a Taylor expansion and thus requires an approximate
operating point for voltage magnitude V op

t,i and angle θop
t,i

as inputs. The first step in the Algorithm is to compute it
using the exact polar model. The computation is based on
the assumption that the strategic player in the upper-level
problem is passive, i.e. the energy storage is neither charging
nor discharging. Thus, the optimization is a typical, single-
level AC OPF. To reduce the computational burden of the
main bilevel optimization, the first step determines on which
lines in the forthcoming steps the power limits will not be
imposed, controlled with Boolean parameter Φt,e,i,j , using a
preset threshold. In case the final solution overloads some of
the lines, the threshold can be changed.

The second step is the presolve, aimed to drastically im-
prove the AC OPF approximation model accuracy. The main
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potential inaccuracy source is the relaxation of the equality
sign in constraints (2.8.1) and (2.9.1) into the inequality sign
to achieve convexity. To prevent relaxation errors in the forth-
coming steps, this step marks all the constraints that would at
the operating point deviate from the inequality boundary and
replaces them with their linear equality variants (2.8.2) and
(2.9.2) controlled with Boolean parameters Λt,e and Γt,i,j .
This step itself is nonconvex. It reruns the operating point us-
ing CPSOTA, but uses exclusively (2.8.1) and (2.9.1) quadratic
constraints as equalities, thus not susceptible to relaxation
errors and not requiring any information about the Λt,e and
Γt,i,j parameters which it determines for the forthcoming
steps. The selection of constraints for the forthcoming steps is
based on their marginal value, computed by default by many
solvers, e.g. IPOPT and Knitro. A constraint marginal is a
sensitivity of the primal objective function on adding a small
positive constant to the right-hand side of the constraint and
thus its sign indicates whether an equality constraint would
be binding if it were relaxed into inequality. In case of the
voltage constraint (2.8.1), it would be binding if the marginal
is positive and thus Λt,e is true. The cosine constraint (2.9.1)
it would be binding if the marginal is negative and thus
Γt,i,j is true. This step has the same solution as the first one
and all delta variables V ∆

t,i and θ∆t,i are zero. The described
presolve working principle is further explained in [17]. It
minimizes (2.1) subject to (2.2)–(2.14) with (2.8.1) and (2.9.1)
as equalities, without (2.8.2) and (2.9.2), with respect to the
variables set Ξll.

The third and fourth steps are convex and simply resolve
the primal and dual problems at the determined operating point
(V op

t,i and θop
t,i ) for the selected constraints (Λt,e, Γt,i,j and

Φt,e,i,j) to supply the variables with their warm start values for
the bilevel solve. Warm start values initialize the interior-point-
based solvers, e.g. initializing Jacobian and Hessian matrices,
enhancing the numerical tractability. The strategic player is
still considered passive and, at the solution, the objective
function values are the same as in the previous steps. The third
step solves the SOCP version of the lower-level problem and
the fourth step solves the SOCP dual. Specifically, third step
minimizes (2.1) subject to (2.2)–(2.14), excluding (2.8.1) and
(2.9.1) in favor of (3.1.1)–(3.2.4) with respect to the variables
set Ξr and the forth step maximizes (B.1) subject to (B.2)–
(B.12) with respect to the variables set Ξdu.

The sixth step, which comes after the bilevel solve step five,
verifies the solution accuracy. It solves the exact polar AC
OPF with fixed (dis)charging decisions to the bilevel solve.
It determines the actual system expenses and the upper-level
profit for decisions from the bilevel problem. For computing
the upper-level profit, nodal prices are obtained from the nodal
power balance constraint marginal. The described procedure is
itemized in Algorithm 1.

The proposed Algorithm is conceptually iterable to improve
accuracy. Steps 1–6 can be run in a loop where the first step
computes a new operating point assuming fixed (dis)charging
decisions from the last bilevel solve. When looping, Steps 1
and 6 solve the same problem and can be performed in a single
optimization. The described Algorithm is visually presented in
Figure 3.

Algorithm 1 Bilevel optimization

1: Run exact polar model Ź NLP; determine OP, Φt,e,i,j

2: Run presolve Ź NC-QCQP; determine Λt,e, Γt,i,j

3: Run LL-primal Ź SOCP; warm start solver
4: Run LL-dual Ź SOCP; warm start solver
5: Run bilevel optimization ŹOpt. class varies; deter. pest , qest
6: Run exact polar model Ź NLP; verify solution

IV. CONCLUSION

This paper presented the mathematical model of a strategic
energy storage acting in the day-ahead market with the market
clearing based on the AC OPF in the lower level. It presents
the SOC constraint reformulation and proposes an algorithm
to accurately solve such complex structure in a time-efficient
manner. The solution techniques as well as the case studies
are presented in the accompanying paper.

APPENDIX

A. Parameters

The following parameters are defined over parameters from
the nomenclature and are used to shorten the model for-
mulation. Parameters defined in (A.1.1)–(A.2.2) are used in
the lower-level primal problem for power flow constraints
(2.4)–(2.7) and subsequently in the dual problem. The naming
scheme is inspired by the parameters definition, i.e. cps stands
for cosine-plus-sine and cms stands for cosine-minus-sine. The
other three parameters defined in (A.3)–(A.5) are used to
shorten the SOC constraint reformulation from Subsection II-B
and, subsequently, in the dual problem.

cpst,e,i,j :“ge ¨cospθ
op
t,i ´θop

t,j´σeq`be ¨sinpθ
op
t,i ´θop

t,j´σeq,

@t, pe, i, jq P E (A.1.1)

cpst,e,i,j :“ge ¨cospθ
op
t,i ´θop

t,j`σeq`be ¨sinpθ
op
t,i ´θop

t,j`σeq,

@t, pe, i, jq P ER (A.1.2)

cmst,e,i,j :“be¨cospθ
op
t,i ´θop

t,j´σeq´ge¨sinpθ
op
t,i ´θop

t,j´σeq,

@t, pe, i, jq P E (A.2.1)

cmst,e,i,j :“be¨cospθ
op
t,i ´θop

t,j`σeq´ge¨sinpθ
op
t,i ´θop

t,j`σeq,

@t, pe, i, jq P ER (A.2.2)

p1,t,e,i,j :“
´ge ¨cospθ

op
t,i ´θop

t,j´σeq
a

ge ` gto
e ¨ τe

, @t, pe, i, jq P E

(A.3)

p2,t,e :“
b

ge ` gfr
e , @t, e (A.4)

p3,t,e,i,j :“

d

g2
e ¨sin

2
pθop

t,i´θop
t,j´σeq g̀e¨pgfr

e `gto
e q`gfr

e ¨g
to
e

ge`gfr
e

,

@t, pe, i, jq P E (A.5)
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Network and 
bid data

Exact polar Presolve

LL – primal

LL – dual

Bilevel 
optimization Exact polar

OP, Φ𝑡𝑡,𝑒𝑒,𝑖𝑖,𝑗𝑗
Λ𝑡𝑡,𝑒𝑒, Γ𝑡𝑡,𝑖𝑖,𝑗𝑗

warm start
𝑝𝑝𝑡𝑡𝑒𝑒𝑒𝑒, 𝑞𝑞𝑡𝑡𝑒𝑒𝑒𝑒

Optional looping

𝑝𝑝𝑡𝑡𝑒𝑒𝑒𝑒, 𝑞𝑞𝑡𝑡𝑒𝑒𝑒𝑒

Fig. 3: Visualization of the Algorithm 1 and input data.

B. Dual

The dual objective function (B.1) is followed by constraints
(B.2)–(B.9), obtained by derivation of the primal problem in
variable order as appearing in the Ξll set from Subsection
II-A. The next three constraints (B.10)–(B.12) are the dual
SOC constraints of (3.1.1), (3.2.1) and (2.12), respectively
(due to the self-duality principle of the basic cones). The
last constraint (B.13) is a nonnegativity condition for the dual
variables associated to the primal inequality constraints.

´λ1,t,i`λ3,t,e,i,j
:pe,i,jqPE

`λ4,t,e,i,j
:pe,i,jqPER

´λ14,t,e,i,j
:Φt,e,i,j

“0, @t,pe, i, jqPEYER

(B.4)

´λ2,t,i`λ5,t,e,i,j
:pe,i,jqPE

`λ6,t,e,i,j
:pe,i,jqPER

´λ15,t,e,i,j
:Φt,e,i,j

“0, @t,pe, i, jqPEYER

(B.5)

9ck ` µ3,t,k ´ µ
3,t,k

`
ÿ

i
:kPGi

λ1,t,i“0, @t, k : :ck “ 0 (B.6)

µ4,t,k ´ µ
4,t,k

`
ÿ

i
:kPGi

λ2,t,i“0, @t, k (B.7)

µ2,t,i,j
:Γt,i,j

´λ12,t,i,j
:Γt,i,j

`λ13,t,i,j
:␣Γt,i,j

`V op
t,i ¨V

op
t,j ¨

ÿ

pe,i,jqPE

pcpst,e,i,j ¨λ3,t,e,i,j

`cpst,e,j,i ¨λ4,t,e,j,i´cmst,e,i,j ¨λ5,t,e,i,j

´cmst,e,j,i ¨λ6,t,e,j,iq{τe“0, @t, pi, jq P NP (B.8)

p´λ3,t,e,i,j´λ4,t,e,j,i`λ7,t,e,i,j
:Λt,e

µ́1,t,e,i,j
:Λt,e

q{2`λ10,t,e,i,j
:␣Λt,e

“0,

@t, pe, i, jq P E (B.9)

λ2
7,t,e,i,j`λ2

8,t,e,i,j`λ2
9,t,e,i,jďµ2

1,t,e,i,j ,

@t, pe, i, jq P E : Λt,e

(B.10)

λ2
11,t,i,j`λ2

12,t,i,jďµ2
2,t,i,j , @t, pi, jq P N

P : Γt,i,j (B.11)

λ2
14,t,e,i,j λ̀2

15,t,e,i,jďµ2
5,t,e,i,j , @t,pe, i, jqPE :Φt,e,i,j (B.12)

µ ě 0 (B.13)

Max
Ξdu

Ωd :“
ÿ

t,k

pck´P
g

k ¨µ3,t,k`P g
k ¨µ3,t,k

´Q
g

k ¨µ4,t,k`Qg

k
¨µ

4,t,k
q ´

ÿ

t,k
::cką0

p 9ck`µ3,t,k´µ
3,t,k

`
ÿ

i
:kPGi

λ1,t,iq
2{p4¨:ckq

`
ÿ

t,i

´

pV op
t,i ´V iq ¨ µ6,t,i ` pV i´V op

t,i q ¨ µ6,t,i

¯

´
ÿ

t,i

ÿ

lPLi

pP d
t,l ¨λ1,t,i`Qd

t,l ¨λ2,t,iq ´
ÿ

t,i

ÿ

sPSi

pgsh
s ¨λ1,t,i´bshs ¨λ2,t,iq´

ÿ

t,pi,jqPNP

:␣Γt,i,j

λ13,t,i,j

`
ÿ

t,pi,jqPNP

:Γt,i,j

p3{4¨λ12,t,i,j´5{4¨µ2,t,i,jq´
ÿ

t,pe,i,jqPE
:Λt,e

pλ7,t,e,i,j`µ1,t,e,i,jq{2`
ÿ

t,iPR

θop
t,i ¨λ16,t,i´

ÿ

t,iPβ

pest ¨λ1,t,i´
ÿ

t,iPβ

qest ¨λ2,t,i´
ÿ

t,pe,i,jqPEYER

:Φt,e,i,j

Se¨µ5,t,e,i,j

´
ÿ

t,pe,i,jqPE

`

pge`gfr
e q¨λ3,t,e,i,j´pbe`bfre q¨λ5,t,e,i,j

˘

¨pV op
t,i q

2{τ 2
e ´

ÿ

t,pe,i,jqPER

`

pgè gto
e q¨λ4,t,e,i,j´pbe`btoe q¨λ6,t,e,i,j

˘

¨pV op
t,i q

2 (B.1)

V op
t,i ¨

ÿ

pe,i,jqPE

V op
t,j ¨ pcmst,e,i,j ¨λ3,t,e,i,j´cmst,e,j,i ¨λ4,t,e,j,i`cpst,e,i,j ¨λ5,t,e,i,j´cpst,e,j,i ¨λ6,t,e,j,iq{τe

´V op
t,i ¨

ÿ

pe,i,jqPER

V op
t,j ¨pcmst,e,j,i ¨λ3,t,e,j,i´cmst,e,i,j ¨λ4,t,e,i,j`cpst,e,j,i ¨λ5,t,e,j,i´cpst,e,i,j ¨λ6,t,e,i,jq{τe

`λ16,t,i
:iPR

´
ÿ

pi,jqPNP

:Γt,i,j

λ11,t,i,j{
?
2`

ÿ

pi,jqPNPR

:Γt,j,i

λ11,t,j,i{
?
2“0, @t, i

(B.2)
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µ6,t,i´µ
6,t,i

`2¨V op
t,i ¨ pλ2,t,i ¨

ÿ

sPSi

bshs ´λ1,t,i ¨
ÿ

sPSi

gsh
s q `

ÿ

pe,i,jqPER

:Λt,e

p2,t,e ¨λ8,t,e,j,i ´
ÿ

pe,i,jqPE
:Λt,e

pp1,t,e,i,j ¨λ8,t,e,i,j`p3,t,e,i,j ¨λ9,t,e,i,jq

`
ÿ

pe,i,jqPE

“ `

´2¨pge`gfr
e q¨V

op
t,i {τ

2
e `V op

t,j ¨cpst,e,i,j{τe
˘

¨λ3,t,e,i,j `
`

2¨pbe`bfre q¨V
op
t,i {τ

2
e ´V op

t,j ¨cmst,e,i,j{τe
˘

¨λ5,t,e,i,j

`V op
t,j ¨ pcpst,e,j,i ¨λ4,t,e,j,i ´ cmst,e,j,i ¨ λ6,t,e,j,iq{τe

‰

`
ÿ

pe,i,jqPER

“ `

´2¨pge`gto
e q¨V

op
t,i `V op

t,j ¨cpst,e,i,j{τe
˘

¨λ4,t,e,i,j `
`

2¨pbe`btoe q¨V
op
t,i ´V op

t,j ¨cmst,e,i,j{τe
˘

¨λ6,t,e,i,j

`V op
t,j ¨ pcpst,e,j,i ¨λ3,t,e,j,i ´ cmst,e,j,i ¨ λ5,t,e,j,iq{τe

‰

“0, @t, i (B.3)

Set of dual variables Ξdu contains all λ and µ variables.
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[17] K. Šepetanc and H. Pandžić, “Convex Polar Second-Order Taylor
Approximation of AC Power Flows: A Unit Commitment Study,” IEEE
Trans. Power Syst., vol. 36, no. 4, pp. 3585–3594, July 2021.

[18] S. J. Kazempour, A. J. Conejo and C. Ruiz, “Strategic Bidding for a
Large Consumer,” IEEE Trans. Power Syst., vol. 30, no. 2, pp. 848–856,
March 2015.

[19] A. Badri, S. Jadid and M. P. Moghaddam, “Impact of generators’
different bidding strategies on system nash equilibrium point,” 2007
International Power Engineering Conference (IPEC 2007), 2007, pp.
1–5.
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