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Abstract 
The replacement of fossil fuel power plants by variable renewable energy sources is reducing 
the flexibility of the energy system, which puts at risk its security. Exploiting the flexibility of 
distributed multi-energy resources through aggregators presents a solution for this problem. In 
this context, this paper presents a new hierarchical model predictive control framework to assist 
multi-energy aggregators in the network-secure delivery of multi-energy services traded in 
electricity, natural gas, green hydrogen, and carbon markets. This work builds upon and 
complements a previous work from the same authors related to bidding strategies for day-ahead 
markets  it closes the cycle of  participation in multi-energy markets, i.e., day-
ahead bidding and real-time activation of flexibility services. This new model predictive control 
framework uses the alternating direction method of multipliers on a rolling horizon to negotiate 
the network-secure delivery of multi-energy services between aggregators and distribution 
system operators of electricity, gas, and heat networks. We used the new model predictive 
control framework to conduct two studies. In the first study, we found that considering multi-
energy network constraints at both day-ahead and real-time optimization stages produces the 
most cost-effective and reliable solution to aggregators, outperforming state-of-the-art 
approaches in terms of cost and network security. In the second study, we found that the 
adoption of a green hydrogen policy by multi-energy aggregators can reduce their consumption 
of natural gas and respective CO2 emissions significantly if carbon and green hydrogen prices are 
competitive. 

Keywords: aggregators, distribution networks, energy markets, multi-energy systems, 
optimization.  
 
Nomenclature 

Indices and sets 

 Energy vectors 
  Supply and return networks 

   Clients 
   Clients at bus  

   ADMM iteration  
       Buses/nodes of electricity, gas, and heat networks 



  Lines/pipelines from bus  to bus  for electricity, gas, and heat  
                                                 networks 

  Gas nodes with natural gas injection 
  Gas nodes with natural gas loads 
  Gas nodes with hydrogen resources 

  Delivery scenarios per energy vector   
   Time intervals 

   Markets/products 

Superscripts 

   Absolute 
   s 
   Automatic generation control 

   Carbon market 
   Free allowances of the carbon market 
   Combined heat and power 

   Carbon dioxide 
   Downward reserve 

   Day-ahead 
   District heating 

   Dual residual 
   Electricity 

   Heat pump 
   Energy 

   End of pipeline 
   Power flow 
   Gas 

   Natural gas loads 
   Guarantees of origin 

   Heat 
   Heat loads and generators 

   Hydrogen vehicles 
   Hydrogen 

   Water 
   Inflexible load 
   Input flow 

   Gas mixture 
   Network injection 

   Natural gas injection 
O   Outdoor temperature 

   Output flow 
   Oxygen 

   Primal residual 
   Photovoltaic system 

   Power-to-gas (or electrolyzers) 
   Return temperature 

   Real-time 
   Supply temperature 
   Standard conditions of temperature and pressure 

   Start of pipeline 
   Battery energy storage system 

   Upward reserve 



   Charging, discharging of electric storage systems or positive, negative 
   Maximum, minimum 

   DSOs replicated values 

Parameters 

   Conversion factors 
   Water specific heat (J/kg.oC) 

   Diameter of pipeline (mm) 
   Efficiency factor 

   Free allowances (tCO2) 
   Heat transfer coefficient (W/ ) 

k   Coefficient of pressure loss in water pipelines 
   Resistance pipeline coefficient 
   Length of pipeline (m) 

   Low heating value (kWh/kg) 
   Resistance of power lines (p.u.) 
   Resistance of thermal buildings (oC/kW) 

   Base power (kVA) 
   Reactance of power lines (p.u.) 
   Length of the time interval  (h) 

   Thermal constant 
   Efficiency/coefficient of performance 
   Hydrogen storage energy dissipation rate (%) 
   Price 2  
   Parameter of response of CHPs 
   Ratio of secondary reserve activation 
   2) 
   Residual 
   Absolute tolerance 
   Dimension of the residuals 
   Heat gains and losses not modeled explicitly (  

Variables 

   Allowances (tCO2) 
   Binary variable 
   Downward band (kW) 

   Higher heating value (MJ/m3) 
   Square of the current magnitude (p.u.) 
   Mass flow of pipelines (kg/s) 

   Mass flows of heat loads and generators (kg/s) 
   Pressure (gas: bar, heat: Pa) 
   Power (kW) 
   Gas flows (m3/h) 
   Reactive power (p.u.) 
   Specific gas gravity 

   State-of-charge (kWh) 
   Upward band (kW) 
   Square of the voltage magnitude (p.u.) 
   Hydrogen fraction 

   Wobbe index (MJ/m3) 
   Internal variables of the aggregator problem 
   Internal variables of the energy DSO problem 



   Auxiliary binary variable 
    
   Temperature (gas network: oK, other: ) 

1. Introduction 

1.1. Motivation and Aim 

With the Paris Agreement, countries worldwide have agreed on making efforts to keep the rising 
of global temperature below 2oC. To achieve this goal, the European Union defined its own goal 
to decrease CO2 emissions by at least 55% by 2030 [1]. The decarbonization of the energy system 
is seen as the first step to achieving this goal. This can be done by replacing fossil-fuel power 
plants with renewable energy power plants, and at the same time reducing energy consumption 
through energy efficiency programs. To promote this transformation, the European Union 
implemented a carbon market to tax carbon-intensive technologies. 

The decarbonization of the electricity, gas and heat systems is an important part of the whole 
decarbonization process. The electricity system started to be decarbonized several years ago 
through the integration of renewable energy sources, such as wind or PV (photovoltaic) farms. 
The natural gas systems, such as gas networks, are planning to be partially decarbonized through 
the injection of green hydrogen1 and biogas. Green hydrogen can also be seen as a storage 
solution for the excess electricity produced by renewable energy sources, since it can be stored, 
and later converted into electricity through fuel cells. Moreover, the use of green hydrogen in 
transportation is also gaining traction which will likely increase the number of hydrogen 
resources connected to the electricity network. Lastly, heating systems powered by fossil fuels 
are planned to be replaced by high-efficiency electric heating systems, such as heat pumps. 
Although, high-efficiency combined heat and power (CHP) systems may also play an important 
role in the transition period. 

The deployment of these low-carbon emission technologies has contributed to the reduction of 
CO2 emissions. However, some of these technologies, such as renewable energy resources, have 
been causing some problems in the energy system, due to their variability nature. To counteract 
these problems, the flexibility of distributed multi-energy resources (DMERs)2 must be used. In 
this context, aggregators provide a technological solution to transform the flexibility of DMERs 
into multi-energy market services, which can be used to compensate the variability of renewable 
energy resources. Nonetheless, this solution also brings new challenges for the operation of the 
energy system. One of the challenges is to ensure that the energy services traded by aggregators 
in multi-energy markets can be delivered without violating the constraints of multi-energy 
networks, and the privacy of any of the energy stakeholders involved. To address this challenge, 
this paper proposes a new hierarchical model predictive control (MPC) framework. 

1.2. Literature review 

Aggregators need decision-support optimization tools to transform the flexibility of DMERs into 
multi-energy services, which can be traded into multi-energy markets, such as electricity (energy 
and reserve), natural gas, green hydrogen, and carbon markets. In this context, aggregators rely 
on two groups of optimization algorithms: 1) bidding optimization algorithms to compute bids 

 
1 Green hydrogen is produced through electrolyzers with renewable energy, making it carbon-free. 
2 Distributed multi-energy resources include PVs, battery energy storage systems, CHPs, thermal loads, and 
hydrogen technologies. 



for day-head markets; and 2) real-time optimization algorithms to ensure the reliable delivery 
of the bids in real-time. 

The first group of optimization algorithms is rich in the literature. Several research papers 
propose bidding models to optimize DMERs, such as EVs [2][3][4][5][6], PVs [4][5][6], battery 
energy storage systems (BESSs) [7][8], thermal loads [4][5][6][7] or CHPs [7][8] for day-ahead 
market participation. The bidding models can be deterministic [2][3], stochastic [4][5][6] or even 
robust [9] optimization models. They can compute network-secure or network-free bids for day-
ahead electricity [3][4][5][6], natural gas [7][8], and carbon [7] markets. The network-free bids 
are computed by bidding models [2][3][4][5][6][8] that do not consider the constraints of multi-
energy networks. This may result in the violation of the physical limits of multi-energy networks, 
making the delivery of the services infeasible [10]. On the other hand, network-secure bids are 
computed by network-constrained bidding models, which can assume the form of centralized 
[11][12][13] or distributed [7][10] approaches. Centralized approaches consider the joint 
optimization of aggregator and network problems, while distributed approaches solve 
aggregator and network problems in a distributed manner, which allows preserving the data 
privacy of aggregators and distribution system operators (DSOs). Typically, distributed 
approaches use the alternating direction method of multipliers (ADMM) [7][10] to solve the 
aggregator and network problems separately. Moreover, centralized approaches use simplified 
electricity, gas, and heat network models (i.e., convex models) to make the joint aggregator and 
network problem solvable. These simplifications transform the non-convex solution space of the 
network problems into a convex space, which results many times in the reduction of the feasible 
space, or even in the expansion of the space to infeasible areas [14]. As a result, solutions can 
be infeasible or suboptimal in the original solution space. The decentralized approaches allow 
solving the original problem by breaking it down into smaller and less complex problems. In this 
way, the non-convex models of energy networks can be considered, which benefits the 
feasibility of the global optimization problem. 

The second group of optimization algorithms is not so common in the literature. This group 
covers real-time optimization algorithms to deliver multi-energy services traded by aggregators 
in day-ahead markets. The real-time optimization algorithms optimize and control DMERs to 
deliver electricity market services, such as energy [15][16][17][18] and reserves [9][15][17][18]. 
Typically, they exploit MPC frameworks, which allow aggregators to reoptimize their DMER 
portfolios with the latest and most accurate dispatch and uncertainty data in real-time. This 
increases the reliability of the services and maximizes the profits of the aggregators by reducing 
imbalance penalties. In more detail, the optimization algorithms in [9] and [15]  are network-
free, while the other three [16][17][18] are network-secure from the electricity network 
perspective. The optimization algorithm [16] uses a centralized model to solve aggregator and 
network problems, while approaches [17] and [18] are distributed. The distributed approaches 
have the advantage of solving the privacy and computational challenges described previously.  

The works described above together with other studies not covered here have provided valuable 
contributions to the formulation of algorithms to optimize DMERs for market participation. 
However, to our best knowledge, none of the studies in the literature proposes a real-time 
optimization algorithm to safely deliver multi-energy services traded by aggregators (i.e., 
delivering multi-energy services without violating network constraints) in electricity (energy and 
reserve), natural gas, green hydrogen, and carbon markets. More specifically, none of the works 
considers the real-time optimization of aggregators considering electricity, gas, and heat 
networks and a portfolio of associated DMERs. The joint consideration of all these technologies 



and system constraints yields several benefits, in particular, the increase of flexibility and 
security of the energy system and an overall reduction of energy costs. 

In addition to the research gaps described above, none of the works investigated the impacts of 
the aggregators adopting a green hydrogen policy. This is important for energy actors like 
aggregators to understand under what conditions the production of green hydrogen is 
economically attractive and what are the associated externalities. 

1.3. Contributions and advantages of the proposed model 

This paper proposes a new hierarchical MPC framework to support aggregators in the real-time 
delivery of network-secure and multi-energy services. The aim is to ensure that aggregators 
deliver cost-effectively and safely the multi-energy services traded in day-ahead electricity, gas, 
green hydrogen and carbon markets. The MPC framework uses the ADMM on a rolling horizon 
to negotiate the network-secure delivery of multi-energy services between aggregators and 
multi-energy DSOs. The multi-energy services include electricity (energy and reserve), natural 
gas, green hydrogen, and carbon allowances, which result from the real-time optimization of 
the multi-energy resources managed by aggregators. 

This work builds upon a previous paper [7], extending it in two ways. Firstly, and most 
importantly, it completes the participation cycle of aggregators in multi-energy markets. In our 
previous work [7], we developed a network-secure bidding optimization model for the 
participation of aggregators in multi-energy day-ahead markets. In that work, the framework 
developed only considered the submission of day-ahead bids by the aggregators, without 
considering their real-time activation. This work concludes the entire cycle of multi-energy 
market participation, by addressing the real-time phase. It provides clear evidence of the 
effectiveness of the proposed approach, which, to the best of our knowledge, was never 
discussed before in the literature, namely concerning the advantages of considering network-
secure bidding methods both in day-ahead and in real-time phases. Secondly, it extends the 
multi-energy markets framework by considering the aggregators  participation in green 
hydrogen markets, which is an innovative feature that cannot be found in the literature 
available. 

Given the research gaps identified in the literature review, the main contributions of this new 
hierarchical MPC framework are the following: 

1. It enables aggregators to safely deliver multi-energy services traded in day-ahead electricity, 
natural gas, green hydrogen, and carbon markets. To the best of our knowledge, this is the 
first work that proposes an approach to enable the network-secure delivery of multi-energy 
services traded in these four markets; 

2. It optimizes for the first time a portfolio of DMERs considering the non-convex constraints of 
electricity, gas (with blending of natural gas and hydrogen) and heat networks. This ensures 
that the solution is feasible in the space of the combined energy networks and vectors. We 
can only ensure feasibility, if we use the non-convex constraints of the different energy 

space of all networks and energy vectors, instead of searching for sub-optimal solutions in 
sub-spaces (in the cases where we consider fewer energy networks and energy vectors).  

In addition to the contributions described above, the following studies using a real-world test 
case are also conducted: 



1. The proposed hierarchical MPC was used to identify the adequate level of network 
observability that provides the most cost-effective and reliable solution to aggregators. In 
this study, we benchmark our approach against state-of-the-art approaches. As explained 
before, this study provides much relevant knowledge about the advantages of using network-
secure frameworks in both day-ahead bidding and real-time delivery phases. This knowledge 
was lacking in the literature despite its utmost importance, as most of the network-secure 
frameworks developed and their studies would focus on the day-ahead bidding phase alone 
(e.g. [7][10]-[13]), disregarding the forecasting errors that naturally occur when forecasting 
day-ahead consumption, production and resources availability; 

2. A series of sensitivity analyses were performed to evaluate the impacts for aggregators when 
adopting a green hydrogen policy under different price scenarios of green hydrogen and 
carbon prices.  

1.4. Paper organization 

The remaining paper is organized as follows. Section 2 describes the framework of the multi-
energy aggregator. Section 3 describes the proposed hierarchical model predictive control. 
Sections 4 and 5 describe the optimization subproblems of the multi-energy aggregator and 
multi-energy DSOs. Sections 6 and 7 discuss the test case and results. Finally, section 8 presents 
the conclusions of the work. 

2. Multi-energy aggregator framework 
In this section, we describe the framework for a multi-energy aggregator to participate in 
electricity, natural gas, green hydrogen, and carbon markets. We also detail the relevant 
interactions of the aggregator with transmission system operators (TSOs), DSOs, market 
operators, and prosumers with multi-energy resources. 

2.1. Interactions of the multi-energy aggregator with electricity, natural gas, green 
hydrogen, and carbon markets 

The multi-energy aggregator participates in the electricity (energy and secondary reserve), 
natural gas, green hydrogen, and carbon markets of the Iberian Peninsula (Portugal and Spain). 
In the day-ahead stage, the aggregator behaves as a price-taker and submits demand 
(electricity), natural gas, hydrogen, and CO2bids at cap prices, supply (electricity) and reserve 
bids at floor prices, so that all offers are accepted in the markets. In the real-time stage, the 
aggregator delivers the multi-energy services traded in day-ahead markets. It is important to 
note that the framework developed in this work can be easily adapted to other energy markets. 

In the next subsections, we describe the framework of the electricity, natural gas, green 
hydrogen, and carbon markets. Then we discuss the steps of the aggregator in these markets. 

2.1.1. Electricity markets 

The aggregator participates in energy and secondary3 reserve markets. In the day-ahead session 
of the energy market, the aggregator submits bids including  hourly quantity 
(MWh). The market operator collects and submits them to EUPHEMIA [19], a European market-
clearing platform, to be dispatched. Then, the TSO of each control area runs congestion 
management [20] to calculate viable energy schedules within their control areas. 

The day-ahead secondary reserve market begins after the congestion management stage. In this 
market, the TSO buys secondary reserve as regulation band (MW), considering the constraints 

 
3 Secondary reserve is also known as automatic frequency restoration reserve in Europe, and regulation 
reserve in the U.S. and Australia. 



of the transmission network of its control area [21]. Secondary reserve is remunerated under 
, set in the secondary reserve market, , 

set in the tertiary reserve market. 

In the real-time stage, the electricity TSO dispatches the secondary reserve through an 
automatic generation control (AGC) signal. Based on the AGC signal, the aggregator dispatches 
the DMERs to deliver the energy and secondary reserve traded in the day-ahead. The 

 

2.1.2. Natural gas market 

In the day-ahead session of the natural gas market, the aggregator submits bids including price 
collects the bids and clears the 

market. Then, the gas TSO validates the bids, taking into account the technical constraints of the 
transmission gas network [22]. 

In the real-time stage, the aggregator delivers the natural gas traded in the day-ahead market 
by dispatching the DMERs. The gas transactions are settled days after delivery. 

2.1.3. Green hydrogen market 

The green hydrogen market is not fully developed in the Iberian Peninsula, nor in any other 
European country. In this paper, we assume that the green hydrogen market will present a 
similar framework to the natural gas market. In addition, we assume that the aggregator can 
buy renewable energy certificates, known as guarantees of origin in Europe, to ensure that the 
hydrogen traded by the aggregator is green. This certification scheme is in line with the new 
mechanisms being discussed today at the European level. However, it does not consider some 
of the additionality requirements related to the geographic and temporal correlations between 
renewable electricity generation and hydrogen production [23]. 

2.1.4. EU carbon market 

The EU carbon market is an auction-based market that occurs three times per week where 
bidders submit bids to buy a specific number of allowances (in tonnes of CO2) at a given price 

tCO2). The listed emitters of greenhouse emissions must cover their yearly emissions by 
buying allowances in this market. Facilities like CHPs, receive free allowances (calculated 
through benchmarking [24]) for the heat produced, although they still need to buy emission 
allowances for the electricity generated. 

In this paper, we consider that the aggregator trades allowances in the day-ahead stage, and 
ensures that the allowances are respected in real-time by optimizing the operation of DMERs. 

2.1.5. Chronological steps of the aggregator 

The chronological steps of the aggregator in the four multi-energy markets described above are 
presented in Figure 1. In the day-ahead stage (day D-1), the aggregator begins by computing 
electricity (energy and secondary reserve), gas, green hydrogen, and CO2bids. Afterwards, the 
aggregator submits the bids to the respective markets. The bids must be submitted before the 
gate closures of electricity (12h for energy, and 19h45 for secondary reserve), natural gas (9h30), 
green hydrogen (9h30), and carbon (11h) markets. In the real-time stage (day D), the aggregator 
delivers the multi-energy services traded in the day-ahead markets. 

In this paper, we propose a new hierarchical MPC framework to support the actions of the 
aggregator during real-time. The calculation of day-ahead bids was addressed in this work [7]. 

2.2. Interactions of the multi-energy aggregator with the distribution system 
operators of electricity, gas, and heat networks 



Today, the DSOs of electricity, gas, and heat networks do not participate in wholesale markets. 
This means that the bids submitted to the day-ahead markets or delivered in real-time are not 
validated by the DSOs, which may cause problems in distribution networks. To address this issue, 
we propose that the aggregator negotiates with DSOs network-secure services in both day-
ahead and real-time stages. In this paper, we cover the real-time negotiation, which is described 
in detail in section 3. The day-ahead negotiation was covered in Ref. [7]. 

The real-time negotiation of the aggregator with DSOs assures that all the multi-energy services 
traded in day-
compliance with their technical restrictions. 

2.3. Interactions of the aggregator with the owners of the distributed multi-energy 
resources 

The aggregator manages the DMERs of prosumers located in electricity, gas, and heat networks 
at the distribution level. All DMERs are flexible and include PVs, battery energy storage systems, 
heat pumps, thermal loads, CHPs, and hydrogen technologies (e.g., electrolyzers, hydrogen 
storage systems, fuel stations and fuel cells). The remaining electricity, gas and heat loads of the 
prosumers connected to the networks are inflexible and need to be supplied by the aggregator. 

 

Figure 1  Sequential steps of the aggregator in the electricity, natural gas, green hydrogen, 
and carbon markets 

3. Hierarchical model predictive control framework 

In this section, we present the hierarchical MPC framework used by the aggregator to safely 
deliver the multi-energy services (bids) traded in the day-ahead markets. The hierarchical MPC 
has two levels, as illustrated in Figure 2. In the first level, a multi-energy and network-secure 
optimization model computes network-secure bands4 and control set-points for the DMERs. The 
optimization model is solved on a rolling horizon framework, which moves forward in intervals 

 
4 Bands define the flexibility of DMERs to increase/reduce generation/load. 
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of 1h for a horizon of 24h. In the second level, a controller adjusts the set-points (3) using the 
bands communicated by level 1 (1) to track the AGC signal (2) communicated by the TSO. The 
controller runs in cycles of 20s. 

The level 1 of the hierarchical MPC framework is described in the next subsection. The controller 
used in level 2 was developed in previous work, and its description can be found in [16]. 

 
Figure 2 - Hierarchical model predictive control framework.  

3.1. Level 1 - Multi-energy and network-secure optimization model 

The generic formulation of the multi-energy and network-secure optimization problem is given 
by (1)-(4). The objective function (1) minimizes the net-cost of delivering the multi-energy 
services traded in day-ahead markets, without violating the constraints of the aggregator (2) and 
multi-energy DSOs (3). Constraint (4) is added here to enable the decomposition of the problem 
by the agent, as will be described in the next section. This constraint ensures the feasibility of 
the optimization problem. Let  be a copy of , and denote delivery scenarios5 per energy 
vector  from aggregator and DSO perspectives, respectively. Let  and  be the 
other variables of the aggregator and multi-energy DSOs. 

(1) 

(2) 

 (3) 

(4) 

In this paper, we use the ADMM [25] to decompose the problem (1)-(4) into aggregator (5)-(6) 
and multi-energy DSO (8)-(9) subproblems and solve them. This allows solving the subproblem 
of each agent separately without violating their data privacy. In addition, it makes the problem 
(1)-(4) computationally tractable by decomposing it into smaller subproblems. 

The ADMM solves the aggregator (5)-(6) and multi-energy DSO (8)-(9) subproblems iteratively 
until reaching a consensus solution. The ADMM includes three steps per iteration , as 
illustrated in Figure 3. 

In the first step, the aggregator solves its optimization subproblem (5)-(6) to compute control 
set-points, bands, and delivery scenarios . The aggregator problem (5)-(6) is defined by the 
objective function (5) and constraints (6). The objective function (5) has two terms. The first 
term minimizes the net-cost of delivering the multi-energy services traded in day-ahead 

 
5 Delivery scenarios define possible exchanges of power between the aggregator and DSOs. Delivery 
scenarios are defined per network node. 



markets. The second term is the augmented Lagrangian (7) applied to constraint (4). It is used 
to penalize the calculation of delivery scenarios that violate multi-energy network constraints. 
Let  be the dual variables, and  be a scalar. 

(5) 

(6) 

(7) 

In the second step, the DSO of each energy network solves its distribution network subproblem 
(8)-(9) to compute network-secure delivery scenarios . The distribution network problem of 
each DSO is defined by the objective function (8) and constraints (9). The objective function (8) 
penalizes the calculation of network-secure delivery scenarios that deviate from the preferences 
of the aggregator.  

(8) 

(9) 

In the third step, an independent platform6 computes dual variables  through equation 
(10). The dual variables are prices used to penalize the calculation of delivery scenarios that 
either violate multi-energy network constraints or that deviate from the preferences of the 
aggregator. The three steps are repeated until the ADMM converges. 

(10) 

The ADMM converges when the stop criteria defined by residuals (11) and (12) are satisfied [25]. 
Let  be the absolute tolerance and  the dimension of the residuals. 

(11) 

(12) 

 
Figure 3  ADMM algorithm. 

 
6 An independent platform is managed by an authorized third-party entity to ensure the data privacy of 
DSOs and the aggregator [42].  
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The optimization subproblems of the aggregator and DSOs were described in their generic form. 
In the next two sections, we describe in more detail these optimization subproblems. 

4. Aggregator subproblem: operational optimization model 

This section presents the optimization subproblem used by the aggregator to deliver the multi-
energy bids traded in day-ahead electricity, natural gas, green hydrogen, and carbon markets. 
In more detail, the optimization subproblem computes bands, control set-points, and delivery 
scenarios.  

4.1. Objective function 

The objective function (13) minimizes the net-cost of the aggregator dispatching the electricity, 
natural gas, green hydrogen, and CO2 traded in the day-ahead electricity (energy and secondary 
reserve), gas, green hydrogen, and carbon markets. The objective function (13) is divided into 8 
terms. The first term (14) represents the real-time electricity costs  it includes the energy 
imbalance costs, secondary reserve mobilization net-costs, and penalties for not providing 
secondary reserve. The terms (15)-(20) represent the imbalance costs between day-ahead 
commitments and real-time deliveries of guarantees of origin (15), natural gas (16), green 
hydrogen (17) and its derivative products (water (18) and oxygen (19)), and CO2 (20). The last 
term (21) represents the penalty term of the augmented Lagrangian, which penalizes the 
violation of the constraints of the electricity, gas, and heat networks. 

(13) 

(14) 

 (15) 

 (16) 

 (17) 

 (18) 

 (19) 

 (20) 

 (21) 

4.2. Multi-energy service constraints 

Constraints (22)-(24) define the electricity (demand and supply), natural gas, and green 
hydrogen to be delivered in real-time. Constraints (25) and (26) define the upward and 
downward secondary reserves to be delivered in real-time. They include the flexibility provided 
by BESSs, PV systems, HPs, CHPs, electrolyzers, and fuel cells.  

(22) 

 (23) 



 (24) 

   (25) 

   (26) 

Constraints (27) and (28) define natural gas imbalances caused by the expected activation of 
secondary reserve provided by CHPs. Constraints (29) and (30) define green hydrogen 
imbalances caused by the expected activation of secondary reserve provided by electrolyzers 
(P2G). 

  (27) 

  (28) 

   (29) 

   (30) 

4.3. Imbalance constraints 

Constraints (31)-(36) define imbalances between day-ahead market commitments and real-time 
expected realizations. In more detail, constraints (31)-(32) define hourly imbalances of 
electricity and guarantees of origin, and constraints (33)-(36) define daily imbalances of natural 
gas (33), green hydrogen (34)-(35), and CO2 (36). 

(31) 

 (32) 

  (33) 

  (34) 

 (35) 

 (36) 

 (37) 

 (38) 

Constraints (39) and (40) ensure that the aggregator only provides secondary reserve when 
electricity imbalances are not expected to occur. Constraints (41) and (42) define the secondary 
reserve band not supplied.  

(39) 

(40) 

(41) 

 (42) 

(43) 

4.4. Market regulation constraints 



The rules of the secondary reserve market (in the Portuguese control area) define that upward 
and downward bands should be 2/3 and 1/3 of the total band, as represented by constraint (44) 
[4]. 

(44) 

Constraint (45) defines the CO2 allowances to cover the electricity generated by the CHPs. Note 
that CHPs receive free allowances for the heat produced, although they still need to buy CO2 

allowances for the electricity generated.  

(45) 

(46) 

Constraint (47) defines the guarantees of origin bought and sold by the aggregator. The 
aggregator buys when the renewable energy resources managed by it do not produce enough 
electricity to certify the hydrogen produced by the electrolyzers as green. The aggregator sells 
when the opposite happens. 

(47) 

4.5. Delivery scenario constraints 

Delivery scenarios define possible exchanges of power between the aggregator and multi-
energy networks (or multi-energy DSOs). In the ADMM negotiation, they are used by the DSOs 
to check for network violations caused by the delivery of aggregator services.  

We model twelve delivery scenarios. The first six scenarios model the delivery of services traded 
in the day-ahead markets, such as electricity (48), natural gas (49), heat (50), hydrogen (51), and 
secondary reserve (52)-(53). The last six scenarios model imbalances in heat (54)-(55) and gas 
(56)-(59) networks caused by the activation of secondary reserve. 

Constraint (48) defines the electricity delivery scenario, which results from the electricity 
consumed by BESSs, HPs, inflexible loads and electrolyzers, and electricity generated by CHPs, 
BESSs, PV systems, and fuel cells. 

(48) 

Constraint (49) defines the gas delivery scenario, which results from the gas consumed by CHPs 
and inflexible loads. 

(49) 

Constraint (50) defines the heat delivery scenario, which results from the heat consumed by 
flexible and inflexible heating loads connected to the district heating, and the heat generated by 
CHPs. 

(50) 

Constraint (51) defines the hydrogen delivery scenario, which results from the hydrogen injected 
into the gas network by hydrogen technologies.  



(51) 

Constraints (52) and (53) define the secondary reserve delivery scenarios in both upward (52) 
and downward (53) directions. They are provided by CHPs, BESSs, fuel cells, HPs, PV systems and 
electrolyzers.  

  
(52) 

  

(53) 

Constraints (54) and (55) define the scenarios of heat imbalances caused by the possible 
activation of the secondary reserve provided by district heating loads and CHPs. 

  (54) 

      (55) 

Constraints (56) and (57) define the scenarios of gas imbalances caused by the possible 
activation of the secondary reserve provided by CHPs. 

  (56) 

    (57) 

Constraints (58) and (59) define the scenarios of hydrogen imbalances caused by the possible 
activation of the secondary reserve provided by electrolyzers. 

  (58) 

    (59) 

4.6. Distributed multi-energy resource constraints 

In this paper, we consider PVs, battery energy storage systems, CHPs, heat pumps, district 
heating loads, and hydrogen technologies as DMERs. The next subsection details the constraints 
of hydrogen technologies. The constraints of the remaining technologies are described in 
Appendix A to improve the readability of the main body of the paper.  

We prioritize the description of hydrogen technologies in the main body of the paper since it is 
one of the main contributions of this paper. The other technologies were described in Ref. [7]. 

4.6.1. Hydrogen technologies 

Hydrogen technologies include electrolyzers, fuel stations, hydrogen storage systems, and fuel 
cells. Figure 4 illustrates an example of a green hydrogen hub with the mentioned technologies. 
In this hub, the electrolyzer produces green hydrogen by consuming renewable electricity from 
the grid (with guarantees of origin) or using local renewable energy resources managed by the 
aggregator. Afterwards, the green hydrogen can be injected into the gas network, stored, or 
consumed by a fuel station. The stored hydrogen can be later injected into the gas network or 
used to power a fuel cell or a fuel station. 

The next four subsections describe the equations used to model green hydrogen hubs, like the 
one illustrated in Figure 4. 



 
Figure 4  Green hydrogen hub. 

4.6.1.1. Electrolyzer constraints 

Constraints (60)-(68) model the electrolyzers (P2G) connected to the electricity network. 
Constraints (60) and (61) define the hydrogen produced by the electrolyzers. Constraints (62)- 
(68) define the limits of the electrolyzers, (62) for electricity consumption and (63)-(68) for 
secondary reserve provision in upward and downward directions. The sign  represents the 
power that flows from  to . For example, the notation in  represents the 
hydrogen that flows from the electrolyzer to the hydrogen storage system. 

(60) 

 (61) 

 (62) 

 (63) 

 (64) 

 (65) 

 (66) 

 (67) 

 (68) 

4.6.1.2. Hydrogen storage system constraints 

Constraints (69)-  (81) define the operation of hydrogen storage systems. Constraints (69) and 
(70) define the state-of-charge and its limits. Constraints (71)-(75) set the charging and 
discharging power and their limits. Binary variables  and define if the hydrogen 
storage is in charging or discharing mode. 

(69) 



 (70) 

 (71) 

 (72) 

(73) 

 (74) 

 (75) 

Constraints (76)-  (81) define the secondary reserve bands provided by the hydrogen storage 
systems. Constraints (76)-(79) define the power limits, while constraints (80) and   (81) set the 
energy limits of hydrogen storage systems.  

(76) 

(77) 

 (78) 

 (79) 

(80) 

  (81) 

4.6.1.3. Fuel cell constraints 

Constraints (82)-(88) define the operation of the fuel cells. Constraints (82) and (83) define the 
electricity produced by the fuel cells. The remaining constraints (84)-(88) define the secondary 
reserve bands provided by the fuel cells.  

(82) 

(83) 

(84) 

 (85) 

 (86) 

 (87) 

 (88) 

4.6.1.4. Fuel station constraint 

Constraint (89) ensures that fuel stations supply hydrogen to inflexible loads, such as hydrogen 
vehicles. Note that the production of green hydrogen to supply fuel stations connected to local 
hubs is not traded in the market. 

(89) 



5. Distribution system operator subproblems: multi-energy flow 
optimization models 

This section presents the multi-energy flow optimization models used by the DSOs to evaluate 
the network feasibility of the multi-energy market services expected to be delivered by the 
aggregator.  

The multi-energy flow optimization models are decomposed by time step  and delivery 
scenario  (see section 4.5) and solved independently. This is possible because they 
are no dependencies between time steps and delivery scenarios in these problems. As a result, 
the subscripts of time and delivery scenarios are dropped in this section.  

The next subsection describes the gas flow optimization problem used by the gas DSO to manage 
the flows of natural gas and hydrogen. The electricity and heat flow optimization problems are 
described in Appendix B to improve the readability of the main body of the paper. We prioritize 
the description of the gas flow optimization problem since hydrogen flow is one important 
innovation of this work. The other energy flow formulations were described in Ref. [7]. 

5.1. Gas flow optimization model 

The gas flow optimization problem (90)-(104) is used by the gas DSO to assure that delivery 
scenarios of hydrogen and natural gas computed by the aggregator are network-secure. 

5.1.1. Objective function 

The objective function (90) minimizes the augmented Lagrangian penalty, which penalizes the 
calculation of network-secure gas delivery scenarios that deviate from the  
preferences.  

(90) 

5.1.2. Network constraints 

Constraints (91)-(92) define the limits of natural gas injection (91) and nodal pressure (92).  

(91) 

(92) 

Constraint (93) models the gas balance in each node. Constraints (94)-(96) define the volumetric 
flow of natural gas (94), hydrogen (95), and gas mixture (96).  converts kWh to m3/h. 

 (93) 

   (94) 

   (95) 

   (96) 

Constraints (97)-(100) define the higher heating value (HHV) (97)-(98) and the relative gas 
density to air (99) of the gas mixture of hydrogen with natural gas [26]. Constraint (100) defines 
the fraction of hydrogen in the gas mixture. 



(97) 

 (98) 

(99) 

(100) 

Constraints (101)-(102) are related to the Wobbe Index (WI) [27] of the gas mixture. These two 
constraints are used to ensure that the energy output of the gas mixture is acceptable for the 
end-users and meet established quality of service requirements.  

(101) 

 (102) 

Constraint (103) defines the steady-stage gas flow [28]. In this case, the gas flowing into the 
pipeline is equal to the gas flowing out of the pipeline. Constraint (104) defines the resistance 
coefficient of each pipeline. 

(103) 

(104) 

6. Test case 

We use the microgrid from the University of Manchester [29], as test case. This system was 
chosen due to the unavailability of suitable test cases in the Iberian Peninsula. Nonetheless, the 
framework developed can be applied to any microgrid independently of its geographical 
location. The microgrid is characterized by electricity, gas, and heat networks, as illustrated in 
Figure 5. The data of the case study is described in detail in the next 2 subsections. The data not 
explicitly provided here can be shared upon request. 

 
Figure 5 - Electricity, heat and gas networks of the study case [29]. 

6.1. DMER and network data 

The DMERs are connected to the electricity, gas, and heat networks. The DMERs connected to 
the electricity network are 6 PVs, 5 BESSs, 5 HPs, and 2 CHPs. The DMERs connected to the gas 
network are 2 CHPs. The DMERS connected to the heat network are 2 CHPs and 5 district heating 
flexible loads. In addition to the mentioned DMERs, a green hydrogen hub is connected to 
electricity and gas networks at nodes 12 and 0, respectively. The green hydrogen hub has 1 
electrolyzer, 1 fuel cell, 1 hydrogen storage system, 1 fuel station, and 1 PV. 



The parameters and the network location of the PVs, BESSs, HPs, and CHPs can be found in [7]. 
The parameters of the hydrogen technologies are the following: an electrolyzer with a maximum 
power of 1500 kW and an efficiency of 0.6; hydrogen storage with a maximum power of 1000 
kW, a minimum capacity of 400 kWh, a maximum capacity of 7900 kWh, and a self-discharging 
factor of 0.01%; a fuel cell with a maximum power of 250 kW, and an efficiency of 0.6; a fuel 
station with daily consumption of 150 kg of hydrogen.

The data on the electricity, heat and gas networks was sourced from [29]. In addition to this 
data, it was also considered the following gas network parameters: WI bounds of [45.7, 55.9] 
MJ/m3 [30]; HHV bounds of [35.5, 47.8] MJ/m3 [30]; network pressure of 2 bar.

6.2. Market data

The electricity market data includes hourly energy prices, imbalance prices, secondary reserve 
prices, upward and downward tertiary reserve prices, AGC signal, ratios of upward and 
downward mobilizations. Figure 6 illustrates the market data sourced from [31][32]. More 
information about the AGC signal used in this paper can be found in [15].

Figure 6 - Electricity market prices.

The natural gas, green hydrogen, and carbon markets have daily prices. The gas market data 
includes a gas price of and a gas imbalance price of [33]. The green 
hydrogen market includes a hydrogen price of 73 , hydrogen imbalance price of 76 

, We considered a carbon price 
of 2 and the price for the guarantees of origin was set at
mentioning that in subsection 7.2, we use different carbon prices [50, 20 2 and green 
hydrogen prices [25, 100 to study the impact of different values on the economic 
performance of the aggregator.

7. Results

In this section, we discuss the economic, network, and computational performances of different 
combinations of day-ahead and real-time optimization strategies. The day-ahead and real-time 
optimization strategies vary on the level of multi-energy network observability. The combination 
of day-ahead and real-time optimization strategies are the following:

1. Day-ahead network-free and real-time network-free (NF-NF): the aggregator performs day-
ahead and real-time optimizations using network-free approaches, which do not consider 
the constraints of the multi-energy networks of the DSOs;

2. Day-ahead network-free and real-time network-secure (NF-NS): the aggregator performs 
day-ahead optimization without considering multi-energy network constraints, and real-
time optimization considering multi-energy network constraints;



3. Day-ahead network-secure and real-time network-free (NS-NF): the aggregator performs 
day-ahead optimization considering multi-energy network constraints, and real-time 
optimization without considering multi-energy network constraints; 

4. Day-ahead network-secure and real-time network-secure (NS-NS): the aggregator performs 
day-ahead and real-time optimizations considering multi-energy network constraints. Note 
that the real-time network-secure strategy corresponds to the new hierarchical MPC 
proposed in this paper; 

This section is divided into two main subsections. The first one, 7.1, presents and discusses the 
performance of the day-ahead and real-time optimization strategies. The second subsection, 
7.2, discusses the impacts on the aggregator of adopting a green hydrogen policy under different 
price scenarios of green hydrogen and carbon prices.  

The code data will become open-source and available before the end of the project (August 
2023). This information will be made available in [34][35]. 

7.1. Comparison of day-ahead and real-time strategies  

This subsection reports and discusses the day-ahead (7.1.1), real-time (7.1.2), and combined 
day-ahead and real-time results (7.1.3).  

7.1.1. Day-ahead results 

The aggregator participates in the day-ahead electricity (energy and secondary reserve), natural 
gas, green hydrogen, and carbon markets, as described in section 2. The aggregator computes 
bids using a bidding optimization model, which can be network-free (NF) or network-secure 
(NS). These two bidding optimization models are described and discussed in detail in Ref. [7].  

The aim of this subsection is to discuss the day-ahead bidding results, which are used as inputs 
of the hierarchical MPC framework proposed in this paper to perform real-time optimization.  

The results of Figure 7 and Table 1 show that NF and NS strategies result in the computation of 
different hourly and daily bids. These differences are caused by the imposition of the multi-
energy network  constraints. It means that the bids computed by NF are network-infeasible and 
could not be delivered since they would cause violations of the network  constraints. The next 
subsection, 7.1.2, discusses the impact of these two day-ahead bidding strategies on the real-
time performance of the aggregator. 

 

Figure 7 - Day-ahead hourly electricity (energy and reserve) and guarantees of origin bids. 
Positive values are reserve and buying bids of energy and guarantees of origin. Negative values 

are selling bids of energy and guarantees of origin. Secondary reserve is divided into 2/3 
upward and 1/3 downward. 

 

 



Table 1  Day-ahead daily bids. Positive values are buying quantities. Negative values are 
selling quantities. 

 NF strategy NS strategy 

Natural gas (MWh) 91.3 95.9 

Green hydrogen (MWh) 2.8 1.8 

Water (L) 5 133 4 506 

Oxygen (kg) 1 357 1 191 

CO2 (t CO2) 15.1 16.0 

7.1.2. Real-time results 

In this subsection, we discuss the imbalance and network-related results produced by the 
combination of two day-ahead strategies (NF and NS) with two real-time strategies (NF and NS).  

7.1.2.1. Imbalance results 

Imbalances are deviations between day-ahead commitments and real-time realizations. These 
imbalances represent an extra cost for the aggregator, which tries to minimize it in real-time. In 
this subsection, we discuss the imbalances produced by the combined day-ahead and real-time 
strategies mentioned previously: NF-NF; NS-NF; NF-NS; and NS-NS. 

Figure 8, Figure 9, and Table 2 show that the NF-NF strategy produced hourly imbalances of 
guarantees of origin, and daily imbalances of natural gas, green hydrogen, water, oxygen, and 
CO2. If we compare these results to those of the other 3 strategies, we can observe that the NF-
NF strategy produces the total lowest daily imbalances (i.e., the sum of all electricity, natural 
gas, green hydrogen, water, oxygen, and CO2 imbalances). However, these imbalances are 
network-free, meaning that they can be network-infeasible, as it will be shown in the next 
subsection. These network violations may eventually lead to the unpredictable disconnection of 
DMERs and prosumers from the networks, which makes it very difficult to estimate the expected 
network-secure imbalances in this case. 

 

Figure 8  Negative energy imbalances and secondary reserve not supplied for the NF-NS 
strategy. 

Table 2  Daily imbalances. Positive and negative values are positive and negative imbalances. 

 NF-NF strategy  NF-NS strategy  NS-NF strategy  NS-NS strategy 

Natural gas (MWh) 15.7 24.2 19.0 16.7 

Green hydrogen (MWh) 0.4 -0.8 0.7 -0.4 

Water (L) -0.5 -0.2 -0.7 -0.9 

Oxygen (kg) -0.1 0.0 -0.2 -0.2 

CO2 (tCO2) 3.1 4.8 3.8 3.3 

 



 

Figure 9 - Guarantees of origin imbalances. Positive and negative values are positive7 and 
negative8 imbalances. 

Similar to NF-NF, the NS-NF strategy also produced hourly imbalances of guarantees of origin, 
and daily imbalances of natural gas, green hydrogen, water, oxygen, and CO2. This strategy 
presents the highest daily imbalances, as illustrated in Table 2. As it is network-free in real-time, 
it allows the ts to be scheduled in a way that leads to the violation of technical 
limits in one or more of the networks considered. However, this option may produce imbalances 
that create network problems, as discussed previously.  

The NF-NS strategy produced the highest daily imbalances of natural gas, green hydrogen, 
water, oxygen, and CO2. In addition, it was the only strategy to produce imbalances of electrical 
energy and secondary reserve, as illustrated in Figure 8. This happens because the aggregator 
computes bids without considering multi-energy network constraints, and delivers them 
considering multi-energy network constraints. The imposition of multi-energy network 
constraints in the real-time stage makes it impossible to deliver all the network-free bids 
computed in the day-ahead.  

Finally, the NS-NS strategy produced lower daily and hourly imbalances than NF-NS and NS-NF 
strategies. These imbalance results demonstrate that considering multi-energy network 
constraints in day-ahead and real-time stages reduces imbalances, and at the same time ensures 
multi-energy network security. 

7.1.2.2. Multi-energy network results 

Figure 10 illustrates the network problems caused by the four strategies when the three delivery 
scenarios  are simulated across the electricity, gas, and heat networks. The 
electricity problems are related to voltage violations and are illustrated in the upper-left corner 
of the figure. The gas network problems are related to WI and HHV violations and are illustrated 
in the upper-right and lower-left corners. The heat network problems are related to mass flow 
violations and are illustrated in the lower-right corner. 

The results of Figure 10 show that NF-NF and NS-NF strategies caused multiple problems in the 
electricity, gas, and heat networks. The NF-NF strategy caused 67 voltage, 28 HHV, 1 WI, and 10 
mass flow violations, totalizing 106 technical problems. The NS-NF strategy caused 44 voltage, 
19 HHV, 2 WI, and 13 mass flow violations, resulting in a total of 78 violations. If we compare 
the two strategies, we can observe that NF-NF caused 28 more problems than NS-NF. 
Concerning the severity of the technical problems, we can observe that the NF-NF strategy 
caused more severe violations when compared to the NS-NF strategy, namely in the heat 

 
7 A positive imbalance represents an excess buying position or a shortage selling position of the aggregator 
in real-time compared to the day-ahead. 
8 A negative imbalance represents a shortage buying position or an excess selling position of the aggregator 
in real-time compared to the day-ahead. 



network. It can be concluded that integrating multi-energy network constraints in the day-ahead 
stage reduces the number and severity of the technical problems, but it does not ensure security 
in real-time if network constraints are not considered in this stage.

On the contrary, NF-NS and NS-NS strategies did not cause any problems in the electricity, gas, 
-time 

ensures the reliable delivery of market services.

Figure 10 Multi-energy network problems caused by the four strategies.

7.1.2.3. Computational results

The real-time strategies use a hierarchical MPC with two levels. Both levels were implemented
in Python. The optimization subproblems of the aggregator and DSOs in the first level were 
implemented in Pyomo and solved by the IBM CPLEX v12.9.0 and IPOPT v3.11.1 optimizers, 
respectively. The aggregator subproblem is a mixed-integer quadratic program, while the DSOs
subproblems are non-linear. The experiments were run on a computer with 8 GB RAM and an 
Intel® Core i5.8265U CPU @ clocked at 1.6GHz.

The optimization subproblems in the first level of the hierarchical MPC are solved every hour. 
Table 3 reports the computational times of these subproblems. As expected, the results show 
that NF is the fastest approach with a total computational time of 0.96s, followed by the NS with 
an average total computational time of 11.03min ((3.38 + max(0.05, 0.11, 0.34))*178 ADMM 
iterations). We used the average values to compute the total computational time since the 
maximum value is an outlier, i.e., it was only observed once. In addition, we assumed that the 
aggregator and DSOs subproblems can be solved in parallel.

Both NS and NF approaches ran under the 1-hour requirement, meaning that can be used in the 
Iberian market setting. In addition, we were able to solve the non-linear DSOs subproblems very 
efficiently using IPOPT, always ensuring convergence at fast execution times, as illustrated in 
Table 3.

The controller in the second level of the hierarchical MPC is run every 20s. The execution time 
of the controller is in the order of milliseconds, far below 20s.



Table 3 - Size and execution time (average, minimum and maximum) of the optimization 
subproblems in the first level of the hierarchical MPC frameworks.  

 Subproblems Nº of variables Nº of constraints MIN time (s)  AVG time (s)  MAX time (s) 

NF Aggregator 61 702 84 077 0.36  0.96  1.44 

NS 

Aggregator 64 753 88 106 2.48  3.38  4.56 

Electricity DSO 226 427 0.03  0.05  0.06 

Gas DSO 515 1 023 0.06  0.11  0.29 

Heat DSO 463 1 341 0.08  0.34  0.50 

The optimization subproblems of the NS strategy were solved using the ADMM, which has 
recently been proven to converge for convex problems [25], but also for many non-convex 
problems [7][10][18] like this one. The absolute tolerance  was set to 0.0001 corresponding 
to a stop criterion of 0.007 kW in the case of the primal residual. 

In the literature, we can find three different types of optimization frameworks for aggregators: 
distributed (i.e., ADMM frameworks), centralized and decentralized. The distributed framework 
based on the ADMM, used in this paper, presents pros and cons when compared with the 
centralized and decentralized frameworks. The next points provide a summary of the 
comparison regarding four main aspects: 

1. Computational complexity: distributed and decentralized frameworks are able to decompose 
complex problems into smaller and simpler problems and solve them efficiently without 
linear simplifications. This is an advantage compared to centralized approaches, which rely 
on linear or other simplifications to solve the problem. This in turn may result in the reduction 
of the feasible space, or even in the expansion of the space to infeasible areas. For example, 
centralized approaches usually use simplified electricity, gas, and heat network models (i.e., 
convex models) to make the joint aggregator and network problem solvable. Nonetheless, 
these simplifications may generate infeasible physical solutions, like in electricity network 
models in scenarios of low voltage [36]; 

2. Privacy: distributed and decentralized frameworks preserve the data privacy of the 
aggregator and DSOs. On the other hand, in centralized frameworks, aggregators need to 
have access to network data as they solve the bidding and network problems together; 

3. Optimality: the distributed framework enables iterative negotiations between the 
aggregator and DSO until they arrive at a consensual solution. Decentralized frameworks 
obtain solutions in 1 or 2 iterations. The reduction of the number of iterations decreases 
computational complexity, although at a potential high cost since it is very likely that it only 
reaches sub-optimal solutions. The centralized framework relies on linear or convex 
simplifications. Therefore, the optimal solution of these simplifications may not be optimal 
or even feasible in the original space, as previously explained;  

4. Communications: the communication requirements are proportional to the number of 
iterations. Therefore, the distributed framework requires more communications between 
the different participants than a decentralized framework. On the other hand, centralized 
frameworks do not require any communications as they solve the problem on their own. 

After weighing the three options, the authors decided to use a distributed approach essentially 
due to the guarantee of reaching a consensual solution in the end for aggregators and DSOs. 

7.1.3. Day-ahead and real-time settlement results 



Table 4 presents the day-ahead, real-time, and settlement net-costs. The settlement net-costs 
result from the sum of the day-ahead and real-time net-costs. The formula used to calculate the 
settlement net-costs is described in Appendix C.   

The results of Table 4 show that the NF-NF strategy presents the lowest settlement net-cost of 
followed by NS-NF, NS-NS, and NF-NS, with net-cost of 821 1033 2759

respectively. The NF-NF strategy presents the lowest settlement net-cost since it does not 
consider the multi-energy network constraints in the day-ahead and real-time optimization 
phases. However, it does not ensure that bids and services delivery are physically feasible, as 
discussed before. Therefore, this settlement net-cost is theoretical since the aggregator will not 
be able to deliver the market services negotiated. Even so, it provides an indication of how much 
the technical limits of the networks are constraining the profits of the aggregator. 

The NS-NF strategy presents the second lowest settlement net-cost. Similarly to NF-NF, it also 
does not ensure network security in real-time, meaning that the delivery of the market services 
may not be accomplished. As the eventual violation of network  limits may lead to 
unpredictable disconnection of DMERs and prosumers, it is impossible to estimate the real 
network-secure settlement costs of NS-NF and NF-NF. Therefore, these costs are theoretical and 
can only be used for comparison purposes. 

Under real-time network-secure conditions, the NS-NS strategy presents the lowest settlement 
net-cost. This shows that considering multi-energy network constraints in the day-ahead and 
real-time problems significantly reduces the real-time net-costs of the aggregator, and 
consequently its settlement net-costs, while the security of the networks is preserved.   

Table 4 - Settlement net-costs. Positive values are costs, and negative values are revenues. 

   Net-  NF-NF strategy NF-NS strategy NS-NF strategy NS-NS strategy 

DA Electricity - Energy 40 40 - 104 - 104 

DA Electricity - Band - 279 - 279 - 260 -260 

DA Gas 1 278 1 278 1 342 1 342 

DA Hydrogen -212 -212 -134 -134 

DA Water 19 19 17 17 

DA Oxygen -0.2 -0.2 -0.2 -0.2 

DA Guarantees of origin -3 -4 -3 -4 

DA CO2 304 304 317 317 

RT Reserve activation -579 -476 -478 -478 

RT Energy imbalance 0 97 0 0 

RT Reserve not supplied 0 1 484 0 0 

RT Gas imbalance 209 323 126 222 

RT Hydrogen imbalance -58 60 -49 31 

RT Water imbalance -2 -1 -3 -3 

RT Oxygen imbalance 0.02 0.01 0.03 0.04 

RT 
Guarantees of origin 

imbalance 
-1 0.9 -1.9 -0.7 

RT CO2 imbalance 78 121 47 83 

DA + RT Settlement 798 2 759 821 1 033 



7.2. Impacts of the aggregator adopting a green hydrogen policy 

In this subsection, we analyze the impacts of the multi-energy aggregator adopting a green 
hydrogen policy under different prices of green hydrogen and CO2. This analysis covers several 
aspects, such as the impacts of different prices on the s economic performance, 
green hydrogen production, natural gas consumption, CO2 emissions, and availability of 
secondary reserve. 

Figure 11 shows that the aggregator cost increases with the increase in CO2 prices, and decreases 
with the increase of green hydrogen prices. However, the impact of CO2 prices is significant, 
while the impact of green hydrogen prices is very small. In sum, the increase in CO2 prices will 
increase the economic pressure on aggregators with natural gas resources like CHPs, 
incentivizing them to replace these technologies with other electricity-powered technologies, 
like heat pumps. 

 

Figure 11  Impacts of CO2 and green hydrogen prices on the cost of the aggregator. 

The prices of CO2 emissions and green hydrogen also impact the production of green hydrogen, 
natural gas consumption, and CO2 emissions of the DEMRs managed by the aggregator, as 
illustrated in Figure 12. The production of green hydrogen increases with the increase of their 
prices, namely when they 
of green hydrogen into the gas network becomes very attractive. On the other hand, the prices 
of CO2 emissions do not impact the production of green hydrogen as much. This shows that 
injecting green hydrogen into the gas network is only attractive when green hydrogen prices are 
higher. 

The consumption of natural gas decreases with the increase of CO2 prices and green hydrogen, 
as illustrated in Figure 12. In more detail, the increase in CO2 prices decreases the consumption 
of natural gas by CHPs, which consume gas to produce heat and carbon-taxed electricity. This is 
more noticeable when the CO2 2 2 2 

2, the room to reduce the consumption of natural gas by CHPs is small. On the other 
hand, the increase in green hydrogen prices increases the injection of green hydrogen into the 
gas network and consequently reduces the need to consume natural gas.  

The CO2 emissions produced by the consumption of natural gas follow the same trend as natural 
gas consumption. This shows that a market with high prices of CO2 allowances and green 
hydrogen can contribute to significantly reducing the consumption of natural gas and emitted 
CO2. 



Figure 12 Impacts of CO2 and green hydrogen prices on hydrogen production, natural gas 
consumption, and CO2 emissions.

The last point to analyze in this subsection is the impact of CO2 and green hydrogen prices in the 
provision of secondary reserve for the power system operation. Figure 13 shows that the 
provision of secondary reserve by the aggregator increases with the increase of green hydrogen 
prices and the reduction of CO2 prices. As mentioned before, high CO2 prices influence the 
operation of CHPs and consequently reduce the availability of these resources to provide energy 
and also secondary reserve services. On the other hand, high green hydrogen prices make 
hydrogen technologies attractive to provide energy and secondary reserve services. In sum, high 
CO2 prices discourage the utilization of technologies powered by natural gas to provide
secondary reserve. On the other hand, high green hydrogen prices may attract other 
technologies to provide this essential power system service.

Figure 13 - Impacts of CO2 and green hydrogen prices in the provision of secondary reserve.

8. Conclusions

This paper presents a new hierarchical MPC framework to assist multi-energy aggregators in the 
network-secure and real-time delivery of multi-energy services traded in day-ahead electricity, 
gas, green hydrogen, and carbon markets. The MPC framework uses the ADMM on a rolling 
horizon to negotiate the network-secure delivery of multi-energy services between aggregators 
and multi-energy distribution system operators. The multi-energy services include electricity 
(energy and reserve), natural gas, green hydrogen, and carbon allowances, which result from 
the real-time optimization of the multi-energy systems managed by aggregators.

We used the proposed hierarchical MPC framework to conduct a series of experiments and
studies. The first study discusses and compares the combined performance of day-ahead and 



real-time strategies with different levels of multi-energy network observability. The results of 
this study allow drawing the following conclusions: 

1. Network security is only ensured when the constraints of the multi-energy networks are 
considered in the real-time optimization problem (i.e., in the hierarchical MPC). This means 
that considering the network constraints only in the day-ahead bidding problem does not 
guarantee network security; 

2. Considering multi-energy network constraints at both day-ahead and real-time optimization 
stages produces the most cost-effective and reliable solution to aggregators since it 
minimizes settlement net-costs while ensuring multi-energy network security. 

The second study investigates the impacts of multi-energy aggregators adopting a green 
hydrogen policy under different price scenarios of green hydrogen and carbon prices. Four main 
conclusions can be derived from the results of this study: 

1. Carbon prices can significantly impact the economic performance of multi-energy 
aggregators with CHPs. High prices may force aggregators to replace CHPs with electricity-
powered technologies, like heat pumps; 

2. Green hydrogen prices can significantly impact the production of hydrogen, namely its 
injection into the gas network. The results show that the injection of green hydrogen is only 
attractive at competitive prices;  

3. Green hydrogen and carbon prices can significantly impact the provision of frequency reserve 
services supplied by DMERs. High green hydrogen prices increase the availability of hydrogen 
technologies, while high carbon prices reduce the availability of natural gas technologies to 
provide frequency reserve services; 

4. Green hydrogen and carbon prices can significantly impact the consumption of natural gas 
and its respective CO2 emissions. High prices of green hydrogen and carbon incentivize the 
injection of green hydrogen into the gas network and the reduction of natural gas 
consumption. These two factors together can contribute to significantly reducing natural gas 
consumption and CO2 emissions. 

Future work consists of investigating the impact of uncertainty in the economic, network, and 
computational performances of day-ahead and real-time optimization frameworks. Moreover, 
it is expected the demonstration of the proposed approach in a real-world setting, under the 
scope of the ATTEST project. 
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Appendix A. Distributed multi-energy resource equations 

This appendix describes the models of the distributed multi-energy resources not detailed in the 
main body of the paper. More specifically, it describes the constraints of heat pumps, district 
heating flexible loads, PVs, battery energy storage systems, and district heating CHPs. 

 



A.1. Heat pump constraints 

Constraints (A. 1)-(A. 10) define the operation of the heat pumps. Constraints (A. 1)-(A. 3) define 
the power limits to consume electricity (A. 1), and provide upward (A. 2) and downward (A. 3) 
secondary reserve bands. Constraints (A. 5)-(A. 7) define the temperature of the building/room 
in each delivery scenario (energy (48), upward (52) and downward (53) secondary reserve band). 
The remaining constraints (A. 8)-(A. 10)  

(A. 1) 

(A. 2) 

(A. 3) 

(A. 4) 

  (A. 5) 

(A. 6) 

 (A. 7) 

(A. 8) 

(A. 9) 

(A. 10) 

A.2. District heating flexible load constraints 

Constraints (A. 1)-(A. 10) are also used to model the operation of district heating flexible loads. 
However, instead of using electric power variables , in this case we use thermal 
variables  without considering the coefficients of performance. 

A.3. Photovoltaic system constraints 

Constraints (A. 11)-(A. 13) define the operation of PVs. Constraint (A. 11) defines the power 
generated by the system, while constraints (A. 12) and (A. 13) define the secondary reserve 
bands provided by PV systems. 

(A. 11) 

(A. 12) 

(A. 13) 

A.4. Battery energy storage systems 

Constraints (A. 14)-(A. 23) define the operation of the battery energy storage systems. 
Constraints (A. 14) and (A. 15) define the limits of charging and discharging. Constraints (A. 16) 
and (A. 17) define the state-of-charge and the limits of the storage system. 

(A. 14) 

(A. 15) 



(A. 16) 

(A. 17) 

Constraints (A. 18)-(A. 23) define the secondary reserve provided by the battery energy storage 
system. Constraints (A. 18)-(A. 21) define the power limits, while constraints (A. 22) and (A. 23) 
define the energy limits. 

(A. 18) 

(A. 19) 

(A. 20) 

(A. 21) 

(A. 22) 

(A. 23) 

A.5. Combined heat and power constraints 

Constraints (A. 24)-(A. 33) define the operation of the CHPs. Constraints (A. 24)-(A. 33) define 
the gas consumption limits (A. 24), electricity (A. 25) and heat (A. 26) generated by them. 
Constraints (A. 27)-(A. 32) define the secondary reserve bands provided by the CHPs in both 
upward and downward directions. 

(A. 24) 

(A. 25) 

(A. 26) 

(A. 27) 

(A. 28) 

(A. 29) 

(A. 30) 

(A. 31) 

(A. 32) 

CHPs are only capable of providing 100% of their power within 60 s [37] making them slower 
than other resources to respond to set-points. Constraint (A. 33) limits the response of the CHPs 
to a fraction of its maximum power. This makes the CHPs capable of complying with the AGC 
signal. 

(A. 33) 

 



Appendix B. DSO subproblems: electricity and heat flow optimization 
models 

This appendix describes the electricity and heat flow optimization models not detailed in the 
main body of the paper.  

B.1. Electricity flow optimization model 

The electricity flow optimization problem (B. 1)-(B. 7) is used by the electricity DSO to make 
network-secure the electricity delivery scenarios computed by the aggregator. 

B.1.1. Objective function 

The objective function (B. 1) minimizes the augmented Lagrangian penalty, which penalizes the 
calculation of network-secure electricity delivery scenarios that deviate from the 
preferences.  

(B. 1) 

B.1.2. Network constraints 

The electricity network is modelled using the non-convex formulation of the branch flow model 
[38][39]. Constraints (B. 2)-(B. 5) are the branch power flow equations. Constraints (B. 6) and (B. 
7) set the limits of the square of the voltage and current magnitudes. 

(B. 2) 

(B. 3) 

(B. 4) 

(B. 5) 

(B. 6) 

(B. 7) 

B.2. Heat flow optimization model 

The heat flow optimization problem (B. 8)-(B. 19) is used by the heat DSO to make network-
secure the heat delivery scenarios computed by the aggregator. 

B.2.1. Objective function 

The objective function (B. 8) minimizes the augmented Lagrangian penalty, which penalizes the 
calculation of network-secure heat delivery scenarios that deviate from the 
preferences.  

(B. 8) 

B.2.2. Network constraints 

The heat network consists of identical supply and return networks. Hydraulic and thermal 
optimizations are performed to calculate the mass flows and temperatures of pipes and nodes. 



In this model, the temperature of generator supply nodes and load return nodes are predefined, 
as well as the heat power at all nodes, except the slack node. 

B.2.2.1. Hydraulic model 

Constraints (B. 9) and (B. 10) define the conservation of mass and pressure drop, respectively. 
Constraint (B. 11) defines the pressure limits. Constraints (B. 11) and (87) set the mass flow limits 
of pipes and loads/generators, respectively [40]. To relax the problem, the heat direction flow 
was initialized for each hour based on the algorithm presented in [41] and remained static for 
the rest of the iterations.  

(B. 9) 

(B. 10) 

(B. 11) 

(B. 12) 

(B. 13) 

B.2.2.2. Thermal model 

The thermal model (B. 14)-(B. 19) is used to determine the temperatures at each network node. 
Constraint (B. 14) is the heat power equation of the loads and generators. The temperature drop 
constraint (B. 15) defines the temperature at the end node of the pipe. Constraints (B. 16) and 
(B. 17) set the limits of the temperatures at the end and start nodes of the pipe. Constraint (B. 
18) defines the conservation of energy. Constraint (B. 19) connects equation (B. 14) to the 
remaining constraints of the thermal model by imposing that the temperatures of mass flowing 
through the node are equal to the temperatures mixed at the node. 

(B. 14) 

(B. 15) 

(B. 16) 

(B. 17) 

(B. 18) 

 (B. 19) 

Appendix C. Settlement equation 

The equation (C. 1) defines the settlement net-cost of the aggregator. This equation is divided 
into 7 terms. The first term (C. 2) is the net-cost of buying and selling electricity and secondary 
reserve at day-ahead and real-time market stages. The remaining terms (C. 3)-(C. 8)are the net-
costs of trading natural gas (C. 3), green hydrogen (C. 4), water (C. 5), oxygen (C. 6), guarantees 
of origin (C. 7), and CO2allowances (C. 8) at day-ahead and real-time stages. 

(C. 1)

(C. 2)



(C. 3)

(C. 4) 

(C. 5)

(C. 6)

(C. 7)

(C. 8)
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