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Abstract—The objective of transmission network expansion
planning is to find the optimal strategy that balances the
investment and the operating costs, considering all generation
and transmission constraints. Attempts to address this problem
in a tractable manner have led researchers to develop different
convex relaxations and approximations. Due to the constant
power grid evolution, new and improved approximation models
are required to successfully handle the upcoming challenges.
In this paper, we present a comprehensive approach to handle
this highly complex problem both tractably and accurately.
The model is based on a convex polar second-order Taylor
expansion approximation of the AC power flows where both the
voltage magnitudes and angles are quadratically constrained. The
proposed approach achieves high accuracy due to the elimination
of constraint relaxation errors, as determined by the presolve,
which can occur due to the convexification process. The model
demonstrated superior accuracy and similar computation times
as the existing approximation models. In comparison to the exact
formulations, our model shows similar accuracy while improving
the computation time.

Index Terms—Optimal power flow approximation, transmis-
sion expansion planning, mixed-integer quadratically constrained
quadratic program

NOMENCLATURE

A. Sets and Indices
N Set of buses, indexed by i and j.
NP Tuple set of paired buses aligned with branch E

orientation, indexed by pi, jq.
R Set of reference buses, indexed by i.
E,ER Tuple set of branches, forward and reverse orien-

tation, indexed by pe, i, jq.
Ei, E

R
i Array of tuple sets of branches at bus i, forward

and reverse orientation, indexed by pe, i, jq.
E`, ER` Tuple set of prospective expansion branches, for-

ward and reverse orientation, indexed by pe, i, jq.
Ei
`, ER

i
` Array of tuple sets of prospective expansion

branches at bus i, forward and reverse orientation,
indexed by pe, i, jq.

G,Gi Set of all generators and array of sets of genera-
tors at bus i, indexed by k.

Li Array of sets of loads at bus i, indexed by l.
Si Array of sets of shunts at bus i, indexed by s.

τ Set of time steps, indexed by t.
Ω,Ωi Set of all wind generators and array of sets of

wind generators at bus i, indexed by w.
Ξ Set of decision variables.

B. Parameters
:ck, 9ck, ck Generator cost coefficients.
P d

t,l,Q
d
t,l Active and reactive power load.

gshs , bshs Bus shunt conductance and susceptance.
ge, g

fr
e , g

to
e Branch π-section conductances.

be, b
fr
e , b

to
e Branch π-section susceptances.

τe,σe Branch tap magnitude and shift angle.
P g

k ,P
g

k Generator minimum and maximum active power
output.

Qg

k
,Q

g

k Generator minimum and maximum reactive power
output.

P
ω

w Wind generator maximum active power output.
Se Branch maximum apparent power.
θi,j ,θi,j Bus-pair minimum and maximum voltage angle

difference.
V i,V i Bus minimum and maximum voltage magnitude.
V op
t,i ,θ

op
t,i Assumed bus voltage magnitude and angle oper-

ating points.
Λt,e,Γt,i,j Boolean parameters which indicate whether to use

quadratic form of voltage and cosine representa-
tion respectively.

M Disjunctive factor, a large positive number.
coste Expansion cost coefficient.

C. Variables
P g
t,k, Q

g
t,k Generator active and reactive power production.

Pω
t,w Wind generator active power production.
Pt,e,i,j , Qt,e,i,j Branch active and reactive power flow.
V ∆
t,i , θ

∆
t,i Bus voltage magnitude and angle change.

Vt,i, θt,i Bus voltage and magnitude.
xcost,i,j Cosine approximation.
qVt,e Second order Taylor series voltage magnitude

term approximation.
ze Binary decision variable for a prospective line.

978-1-7281-7660-4/21/$31.00 ©2021 IEEE



1 . INTRODUCTION

A. Motivation and background

Transmission expansion planning (TEP) represents an im-
portant research area in the field of power systems. TEP
determines the location and number of new lines that need
to be installed to achieve certain goals in the transmission of
electrical power. An optimal TEP solution usually consists of
several targets, such as increasing reliability and ensuring the
security of supply, minimizing the investment and operating
costs, reducing power losses, and avoiding potential conges-
tion. With the continuous increase in demand levels, more lines
will become congested in the near future and for that reason,
it is important to identify and improve potential weak spots
in the transmission system to ensure system security and to
maximize social welfare.

The nonlinear and non-convex nature of the exact AC TEP
problem makes the computation of the globally optimal solu-
tion, in a reasonable time, difficult to achieve, especially when
large-scale networks are considered. The TEP problem has
been solved using mathematical optimization approximation
and relaxation models [1] – [11] and heuristic optimization
methods [12] – [14]. Paper [15] presents a comprehensive
review and classification of available publications and models
on the TEP problem. Heuristic methods, based on the power
flow results, incrementally select expansion line that removes
congestion in a selected part of the network. Considering the
added line, power flow analysis is recalculated and the process
continues step-by-step until there is no more congestion in
the network. Heuristic methods rarely achieve global opti-
mality and do not provide any optimality estimates. On the
other hand, convex mathematical optimization models pro-
vide model’s solution optimality guarantees, but no feasibility
guarantees due to reduced accuracy due to applied relaxations
or approximations. Several methods have been proposed for
the TEP problem and they mostly use classical optimization
techniques, such as linear programming [3] – [5], non-linear
programming [6] and mixed-integer programming [7] – [8].

B. Literature review

Due to the high computational complexity of TEP, using one
of the exact AC network models is not a popular approach de-
spite the ultimate accuracy of the obtained solution. Thus, [12]
presented a mixed-integer nonlinear programming (MINLP)
approach for solving TEP for an AC network model using
heuristic algorithms and interior point method which obtained
a quality solution for the presented problem. For mathematical
optimization programming, approximations such as linear DC
model [10], piecewise-linearized AC model [1] and linear-
programming of AC power flows (LPAC) [9] are commonly
used to approximate the exact AC power flow equations.

The DC model approximation has the fastest computation
time compared to any other approach, but in terms of accuracy,
it results in a suboptimal and frequently infeasible solution in
reality. Accuracy gap of the linear DC model compared to the
exact one arises from simplifications made when neglecting

reactive power flows, active power losses, and voltage drops
in network optimization modeling [2], [12], [14]. Piecewise
linearization of AC power flows (LACTEP) was introduced in
[1], where reactive power flows, active power losses, and off-
nominal bus voltage magnitudes were retained. Linearization
is based on the first-order Taylor series expansion and is
used to separately model network losses initially defined as
non-convex constraints. The optimal solution and computation
time highly correlate with the number of linear blocks used
in the piecewise linearization process. The objective function
in this approach varies with the number of linear blocks. To
obtain the best solution, it is necessary to perform an iterative
sensitivity analysis with different number of linear blocks,
which results in a prolonged computation time. [9] proposes a
linear approximation of the AC power flow equations (LPAC)
that, contrary to the DC model, captures reactive power flows
and voltage magnitudes, as well as active and reactive power
losses, which means they do not have to be modeled separately
as in [1]. The linearity of power flow equations in the LPAC
model is highly desirable in terms of computational tractabil-
ity. However, for the TEP process, the cosine approximation is
modeled in its quadratically constrained formulation to better
capture the voltage angle variable, thus the LPAC model in this
paper is presented as a mixed-integer quadratically constrained
quadratic programming (MIQCQP) model.

However, all of the previously mentioned popular approx-
imations tend to have certain accuracy disadvantages when
it comes to modeling of reactive power flows, voltage mag-
nitudes, and losses, and thus often result in a suboptimal or
even infeasible solutions. On the other hand, convex quadratic
approaches of the AC power flows can achieve high accuracy
when there are no constraint relaxation errors due to the
convexification process. A new ACOPF approximation ap-
proach [16] is based on the convex polar second-order Taylor
approximation (CPSOTA) of AC power flows, where the
relaxed quadratic constraints that would likely cause relaxation
errors are identified in the presolve process. The identified
quadratic inequalities are substituted with linear equality con-
straints, significantly improving model’s accuracy. Our work
builds upon the CPSOTA approximation by introducing new
constraints necessary for TEP.

C. Paper contribution and structure

Contribution of the paper consists of the following:
‚ We present new model for TEP process based on the

Taylor series that approximates second-order voltage vari-
ables.

‚ Presolve technique is used to decide whether to use the
quadratic or the linear form of power flow constraints to
avoid constraint relaxation errors due to the convexifica-
tion process.

‚ The resulting MIQCQP solution is obtained much quicker
than the MINLP solution, while maintaining high accu-
racy

Rest of the paper is structured as follows: Section 2 presents
our mathematical model for TEP problem. Subsection 2 -A in-



troduces the presolve technique and Subsection 2 -B presents
model components. Case study is presented in Section 3 . It
presents description and set-up of test cases, and algorithm that
describes four step procedure of our TEP model. Section 4
provides relevant conclusions and guidelines for future work.

2 . MATHEMATICAL MODEL

Our model is based on the convex polar second-order
Taylor approximation of AC power flows where both the
voltage magnitudes and angles are quadratically constrained.
The proposed approach achieves high accuracy due to the
elimination of constraint relaxation errors, as determined in the
presolve process, which can occur due to the convexification
process. Detailed algorithmic implementation of the presented
model is defined in Section 3 .

A. Presolve technique

The convex quadratic approach can achieve high accuracy
when there are no constraint relaxation errors that result from
the convexification process. The presolve process identifies
constraints that would likely cause relaxation errors and de-
cides whether to use the quadratic or the linear form of power
flow constraints to avoid relaxation errors.
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Swapping the inequality constraints in equations (2.8) and
(2.10) with their linear alternative in equations (2.9) and
(2.11) avoids constraint relaxation errors due to convexification
process. The decision for swapping inequality constraints with
their linear alternative is based on the marginal value of
equations (1.1) and (1.2), which are defined as quadratic equal-
ity constraints in the presolve process. Constraints’ marginal
values represent the sensitivity of the objective function on
these constraints and they are computed by default by many
solvers, e.g. IPOPT. For constraint (2.8) to be binding, due
to its greater-or-equal sign, qVt,e should have the tendency to
be as small as possible, i.e. marginal value of (1.1) needs to
be positive. Oppositely, for constraint (2.10) to be binding,
due to its less-or-equal sign, marginal value of (1.2) needs
to be negative. Therefore, the quadratic form of constraint
qVt,e is used only if the Boolean parameter Λt,e is true and
conductance ge is positive, and quadratic form of constraint
xcost,i,j is used only in the Boolean parameter Γt,i,j is true.

B. Optimization model

This subsection presents the whole network-constrained
TEP model.
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The objective function (2.1) minimizes total operating and in-
vestment cost over defined time period. For operating cost we
use quadratic cost curve. Equations (2.2) and (2.3) represent
bus balance constraints for active and reactive power. Con-
straints (2.4)–(2.7) represent power flow equations for existing
lines which also contain second-order term approximation
variables qVt,e and θopt,i that are defined from (2.8) - (2.11).
Wind generators output is limited by its maximum generating
capacity as defined in (2.12), and output limits of active and
reactive power for conventional generators are set in (2.13) and
(2.14). Constraint (2.15) defines maximum branch apparent
power flow in both directions. Equation (2.16) defines the ref-
erence bus angle value. Voltage magnitude and bus-pair angle
constraints are defined in (2.17) and (2.18). Constraints (2.19)–
(2.22) represent power flow equations for prospective lines,
where pf pψq, ptpψq, qf pψq, qtpψq are sequentially defined as
the right-hand side of equations (2.4)–(2.7). Equation (2.23) is
used to force the power flow on prospective lines to be equal
to zero it the prospective line is not selected for the expansion
process.

3 . CASE STUDY

We demonstrate the accuracy of our model on the IEEE
24-bus and the IEEE 73-bus (RTS96) systems from the OPF
benchmark [17]. Due to the limited amount of available
network data for transmission network expansion planning, the
presented grids are modified to capture different time intervals
during the operating horizon. Wind power generation units
are included in the system, and their active power production
limits are defined for each time step, which have assigned
occurrence frequency throughout the target years. Detailed
input data on these modified power systems can be found in
[18]. To incur congestion, conventional generator’s minimum
production limits are reduced by the factor of 50% and the line
ratings are reduced by the factor of 20% as compared to the
original values defined in [17]. Different time segments are
used to account for different branch power flows that occur
as a result of variable output of wind generator active power
production at each time period. Therefore, during the different
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Fig. 1: IEEE 24-bus system for TEP.

time segments, different lines are identified as prospective
candidates for the expansion of the transmission network. For
the IEEE 24-bus system, the number of representative time
steps is set to 7, and for the IEEE 73-bus (RTS96) system
it is set to 5. The IEEE 73-bus (RTS96) system with 120
branches is a complex network by itself. To capture a compu-
tationally complex, yet time feasible case study, the number
of prospective candidate lines for the IEEE 24-bus system
with 38 branches has to be greater than for the IEEE 73-bus
(RTS96) system. Set of prospective expansion branches Ei

`

is determined after the first step of our model where the lines
with the apparent flow greater than 70% of their capacity, for
the IEEE 24-bus system, are defined as prospective candidates.
For the IEEE 73-bus (RTS96) system, lines with the apparent
flow value greater than 90% of their capacity are chosen as
prospective candidates. It is assumed that at most one line
is allowed to be added in each transmission corridor in the
TEP process. The IEEE 24-bus system with prospective and
constructed lines is visualized in Fig. 1.

The accuracy of the presented model is obtained through a
four-step process. Our computation procedure starts with the
exact AC polar model where the network expansion binary
variables are excluded. This step provides a good Taylor
expansion operating point of both the voltage magnitude and



angle, which are then used in the second step. The second step
is defined as a presolve where the non-convex form of our
model is run, but also without the computationally demanding
binary variables. In the non-convex form, quadratic inequality
constraints (2.8) and (2.10) are applied as quadratic equality
constraints (1.1) and (1.2) whose marginal value signs we use
to determine if the constraint would be binding if relaxed, as
described in Subsection 2 -A. The third step is to run the main,
full mixed-integer AC TEP using the convex approximation
around the previously computed operating point, with binary
variables and constraints defined in the presolve. The last step
is to run the exact polar model where binary variables are
considered as parameters whose values are defined in the pre-
vious step. Results of this step will determine approximation
errors that were made in this model. The described procedure
is itemized in Algorithm 1.

Algorithm 1 Transmission expansion planning (TEP)
1: Run exact polar model without binary variables for transmission

expansion (NLP)
2: Run non-convex presolve using the operating point from the

previous step, also without binary variables for transmission
expansion (non-convex QCQP)
{In this step the presolve selects constraints for the main TEP
computation by evaluating the constraints’ marginal value}

3: Run the main TEP model around the previously computed
operating point with binary variables for transmission expansion
(MIQCQP)

4: Run the exact polar model with fixed binary variables to TEP
solution in step 3 to determine approximation error (NLP)

Simulation results are provided in Table I and Table II, and
their visual representation is provided in Fig 2. and Fig 3.

Our convex approximation (CPSOTA) is compared with
the exact AC polar model, linearized AC model (LPAC) [9],
linear DC model, Jabr’s relaxed second-order cone program-
ming model (JABR) [19] and piecewise-linearized AC model
(LACTEP) [1].

In both test cases, the presented model by far outperforms
other approximations in terms of the objective function value
error and, more importantly, it is the only one that yields the
correct expansion plan. Construction of the new transmission

TABLE I
TEP RESULT COMPARISON FOR THE IEEE 24-BUS SYSTEM

Model Time [s] Expansion plan Total cost Error [%]

POLAR
(MINLP)

2730 L7, L13, L23 4.0359299 E+09 0

LPAC
(MIQCQP)

240
L7, L12, L13

L21, L22, L23, L28
3.9130797 E+09 -3.044

DC
(MILP)

70 L12, L22, L23, L28 3.7468042 E+09 -7.164

JABR’s
(MISOCP)

130
L7, L12, L13

L21, L22, L23, L28
3.9138228 E+09 -3.026

LACTEP
(MILP)

370
L7, L11, L12, L13

L21, L22, L23, L28
3.9116847 E+09 -3.078

CPSOTA
(MIQCQP)

340 L7, L13, L23 4.0361073 E+09 0.004
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Fig. 2: Visualization of different TEP models accuracy for the IEEE 24-bus
system test case.
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Fig. 3: Visualization of different TEP models accuracy for the IEEE 73-bus
system test case.

power lines shifts the cost from operation to investment, but
eventually, TEP process provides saving in total costs. Due
to imprecise modeling of the reactive power flows, voltage
magnitudes and power losses, the LPAC, JABR, and LACTEP
models do not accurately reflect the actual solution, thus
those models in both test cases result in expansion plans
that consists of larger sets of newly erected lines than the
exact AC polar model. The larger expansion plan of those
models results in lower, realistically imprecise, total costs.
Consequently, the approximation error of those models is
greater than of the proposed CPSOTA model that captures
the same expansion plan as the exact AC polar model. The

TABLE II
TEP RESULT COMPARISON FOR THE IEEE 73-BUS (RTS96) SYSTEM

Model Time [s] Expansion plan Total cost Error [%]

POLAR
(MINLP)

1260 L30, L90 1.390911 E+10 0

LPAC
(MIQCQP)

530 L25, L53, L91, L102 1.334429 E+10 -4.061

DC
(MILP)

310 L53 1.265998 E+10 -8.981

JABR’s
(MISOCP)

610
L30, L53

L69, L90, L91
1.267801 E+10 -8.851

LACTEP
(MILP)

1800
L25, L53

L69, L90, L91
1.335497 E+10 -3.984

CPSOTA
(MIQCQP)

710 L30, L90 1.390794 E+10 -0.008



DC model determines a larger set of required lines than
the exact AC polar model for the expansion process of the
IEEE 24-bus system, which has a large set of prospective
candidates. On the other hand, the DC model for the IEEE
73-bus (RTS96) system captures a smaller set of required
lines than the exact AC polar model. As expected, in both
test cases the linear DC model has the highest approximation
error. Computation-time-wise, the presented CPSOTA model is
faster than LACTEP approximation and slower than JABR’s
relaxation, and DC and LPAC approximations for both test
cases. The highest objective function approximation error of
the CPSOTA model, in both test cases, is -0.008% as compared
to the exact AC polar model. In terms of the total computation
time, the CPSOTA model is 87% faster than the exact AC
polar model for the IEEE 24-bus system with a larger set of
prospective lines. For the IEEE 73-bus (RTS96) system, with a
smaller set of prospective lines, the CPSOTA model achieves
43% faster total computation time than the exact AC polar
model. The presented model is accurate around the operating
point estimated by solving the exact AC polar model without
binary variables for transmission expansion. The advantage
of this approach is the possibility to iteratively run the main
TEP model by updating the operating point and retesting the
constraints in step 2 of Algorithm 1 for that new operating
point. This way the approximation errors reduce even further.

4 . CONCLUSION

This paper utilizes the recently published convex polar
second-order Taylor approximation of AC power flows [16]
to deliver high modeling accuracy and tractability to the TEP.
Model’s accuracy is achieved by utilization of quadratically
constrained voltage magnitudes and angles. In the presolve
process quadratic inequality constraints, which could cause
relaxation errors due to the convexification process, are identi-
fied and replaced by their linear equality constraint alternative.
The method is evaluated on two modified test cases based
on the PGLib-OPF benchmark [17] and compared against the
existing models. The proposed model demonstrates superior
accuracy at no additional computation cost, as computation
times are similar to the ones achieved by using the existing
approximation models. In comparison to the exact AC power
flow formulations, our model shows similar accuracy and the
same realistic expansion planning results, while computation
time is significantly improved. The high accuracy of the
presented model is desirable for further applications in more
complex power systems with flexible devices, such as battery
energy storage systems (BESS). The BESS will have an
important role in congestion reduction, voltage control, and
transition to the sustainable and secure energy system based
on renewable sources. The BESS can be favorable at locations
where construction of new lines is not possible, and to reduce
power curtailment at locations where renewable energy sources
are installed. It is also possible to coordinate TEP with
the generation expansion planning (GEP) by allocating the
necessary expansion investments. However, the selection of
different generation units for the expansion process can affect

the TEP results. The relationship between TEP and GEP can
be investigated in the future work.
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